

Published on Multilingual Online Translation (http://www.molto-project.eu)

D3.2 MOLTO translation tools prototype

Contract No.: FP7-ICT-247914

Project full title: MOLTO - Multilingual Online Translation

Deliverable: D3.2 MOLTO translation tools prototype

Security (distribution

level):
Public

Contractual date of

delivery:
M24

Actual date of

delivery:
March 2012

Type: Prototype

Status & version: Final

Author(s): Lauri Carlson

Task responsible: UHEL

Other contributors:
Thomas Hallgren, Krasimir Angelov, Seppo Nyrkkö, Lauri Alanko,

Chunxiang Li, Inari Listenmaa

Abstract

Deliverable D3.2 consists of a prototype of the MOLTO translation tools, documentation of

the translation scenario and instructions on the download and installation of the prototype.

http://www.molto-project.eu/

1. Introduction

MOLTO promises a translation tool based on Grammatical Framework, a programming

language for multilingual grammars. The Grammatical Framework (GF) is used in the

MOLTO project to build translation systems for EU languages. The user of the MOLTO

translation tool need not know how to write GF grammars. She is supposed to use domain

specific grammars developed by others to translate documents in the domains covered by the

grammars. GF resource grammars offer basic grammar coverage in dozens of languages. A

domain specialist is supposed to write an abstract grammar for a domain based on an

ontology of the domain that provides the key concepts and their relationships. Language

specific grammar engineers are supposed to map the common abstract grammar to the

different resource grammars. Basic domain language and coverage does not guarantee that all

terms and idioms found in a translatable document are covered. To be really usable, the

MOLTO translation tool should handle lexical gaps in a way that benefits and benefits from a

wider community of translators. It should also provide fallback solutions when a text is not

covered by the available grammar(s).

This document builds on the Translation Tools API document, which lays out the translation

scenario/s addressed by the prototype and describes the various programming APIs available

for building the prototype. This document explains the installation, use, and limitations of the

MOLTO translation tool prototype. The prototype integrates some but not yet all aspects of

the MOLTO translation tools design in the TT API document. As in the API document, we

single out a set of core tools for a standalone translator used by one translator, from an

extended set of tools that are designed to support MOLTO translation communities.

The core MOLTO Translation Tool (TT) consists of these parts.

 translation editor

 grammar manager

 document manager

 term manager

The core TT editor can be used standalone. It is being integrated, though in the prototype

deliverable, only just embedded in the rest of MOLTO translation and ontology/terminology

maintenance tools (the extended prototype), in particular, the GlobalSight TMS and the

TermFactory term ontology management. Eventually, they both shall play together with

grammar GF maintenance and development machinery. To help orientation, we recapitulate

the intended workflow from the Translation Tools API document.

1.1 The MOLTO Translation Workflow

The MOLTO TT (translation tools) editor supports a one-person workflow where the same

person is the author(ised editor) of the source and the translator. The adoption of the

GlobalSight TMS to MOLTO allows embedding it in a more collaborative scenario where

more actors are involved as in the professional workflow described in the API document, by

adding traditional CAT and translation project support tools to the toolkit. A more difficult

part is to adjust the workflow so that the adaptivity goal is satisfied. In the professional

workflow, corrected translations accumulate in the translation memory, which helps

translators avoid the same errors next time. In the MOLTO workflow, GF has an active role

in generating translations, so it is GF that should learn from the corrections. Concretely, when

a translator or reviser changes a wording, the correction should not go unnoticed, but should

find its way to back to GF, preferably through a round of community checks. More generally

improvements should be shared by the community, so that the whole community acts

adaptively.

We next try a description of one round of the ideal MOLTO translation scenario.

Although it is possible that an author is ready to create and translate in one go (especially in a

hurry), it is more normal to have some document(s) to start from. The document/s might be

created in a GF constrained language editor in the first place. In that case, the only remaining

step is translation. If translation coverage and quality has been checked, nothing more is

neeeded. But frequently, some changes are needed to a previously translated document, or a

new one is to be created from existing pieces and some new material. Imaginably, some of

the parts come from different domains, and need to be processed with different grammars.

Some such complications might be handled with document composition techniques in the

manner of Docboook or DITA toolchains.

The strength of GF is that it ought to handle grammatical variation of existing sources well,

so as to avoid manual patching of previous translations. Assume there is a previously GF

translated document, and we want to produce a variant. Then it ought to be enough to load

the document, make desired changes to it under the control of the GF grammar, and let GF

generate the modified translations.

Is it necessary to show the translations to the user? Not unless the translator knows the target

language(s). We should distinguish two profiles: blind translation, where the author does not

know or is not responsible for the target languages herself, but relies on outside revision, and

plain translation, in which there is one or two target language known to the author/translator

to translate to, who wants to check the translations as she goes.

In the blind profile, the author has to rely on revisers, and the revision cycle is slower. The

revisers can either notify the author that the source does not translate correctly in their

language(s), or they may notify the grammar/lexicon developer(s) directly, or both. If there is

a hurry, the reviser/s should provide a correct translation directly for the author/publisher to

use as canned text. In addition, they should notify the grammar developer/s of the revisions

needed to GF. The notification/s could happen through messages, or conveyed through a

shared translation memory, or both. In this slower cycle, it may not be realistic to expect the

author to change the source text and repeat the revision process many times over for the same

source and possibly a multiplicity of languages to get everything translate right before

publication.

In the plain profile, a faster cycle of revision is called for. The author/translator can try a few

variations of the input. If no variant seems to work, then she probably wants to use her own

translation, but also to make sure that GF learns of and from the failure. The failure can be a

personal preference, or a general fix that the community should profit from. If it is a personal

preference, the user may want to save the corrected translation in her translation memory

and/or glossary, but also she may want to tweak her GF grammar to handle this and similar

cases to her liking next time. If it is just a lexical gap or missing fixed idiom, then there

should be in GF translation API a service to modify the grammar without knowing GF. The

modifications could happen at different levels of commitment. The most direct one would be

to provide a modular PGF format which would allow advising the compiled user grammar on

the fly. Such a runtime fix would make sure that the same error will not happen during the

same translation session or subsequent ones at least until the domain grammar is recompiled.

The next level of commitment to a change would be to generate new GF source, possibly

from example translations provided by the author/translator, compile them, and add the

changed or extra modules to the user's GF grammar. The cycle involved here might be too

slow to do during translation, but it could happen between translation sessions. If fully

automatic grammar revision is too error prone, the author/translator could just go on with

canned translations in this session, and commit change requests to the grammar developer

community. In this case, the changes would be carried out in good time, with regression tests

and multilingual revision cycles, especially if the changes affect the domain semantics

(abstract grammar) and thereby all translation directions.

Here is a figure of the overall design.

2. The MOLTO Translation Tools

Architecture

The MOLTO Translation Tools architecture is recapitulated here briefly. It consists of many

largely independent components. There is a core basically answering the needs of a single

author/translator, and an Extended API addressing the needs of a community of authors,

translators, and grammar engineers.

The components of the MOLTO TT editor prototype currently include the following:

1. sign in

2. grammar manager

3. document manager

4. term manager

5. translation editor

The components of the MOLTO TT extended prototype include the following:

1. user management

2. grammar management

3. document management

4. lexical resources

5. translation editing

6. translation memory

7. reviewing/feedback

8. grammar engineering

The first five are extensions of the corresponding facilities in the core. The lexical resources

API borrows from TermFactory. The translation memory and the reviewing/commenting

facilities are adapted from GlobalSight. The last item is based on the GF grammar

development tools API.

3. The MOLTO Translation Tools Prototype

This section describes the code constituting the prototype. The code base of the translation

tools extended prototype currently consists of the following parts.

 MOLTO TT editor

 GlobalSight (adapted for MOLTO)

 TermFactory (adapted for MOLTO)

 OntoText API

 MOLTO Grammar Tools API

This document describes the prototype's software packages, their installation, use and current

limitations. The last two components are not discussed further in this document, because they

are described in other MOLTO deliverables. The services currently provided by the GF

server are outlined in the MOLTO Grammar Tools API document. The GlobalSight WS API

was described in the MOLTO Translation Tools API document. TermFactory is documented

at length in the TermFactory manual at

http://www.helsinki.fi/~lcarlson/CF/TF/doc/TFManual_en.xhtml .

http://www.helsinki.fi/~lcarlson/CF/TF/doc/TFManual_en.xhtml

3.1 The MOLTO Translation Tools (TT)

Editor

This section describes the GF translation editor originally developed by Bringert and Angelov

at UGOT and reworked at UHEL.

To guide the development of a suitable translation editor API to support MOLTO translation

needs, UGOT created a prototype web-based translation editor. It is implemented using the

Google Web Toolkit and usable for authoring with small multilingual grammars. To use it

from the web, all that is needed is a reasonably modern web browser. To install it locally, one

needs in addition a web server, MySQL database and GF services.

The editor runs entirely in the web browser, so once you have opened the web page and have

documents and grammars loaded, you can continue translation editing while you are offline.

3.1.1 Software requirements

In order to install the editor, you need to have the following components:

1. The editor code itself (in the eclipse package)

2. For developer version only:

o Eclipse Helios JEE (3.6)

o Google Web Toolkit plugin (tested with version 2.3.1)

3. Web server

o Apache (tested with 2.2.14 on Ubuntu)

o FastCGI (libapache2-mod-fastcgi)

4. Database

o HSQL (tested with version 1.8.1)

o HSQL-MySQL (1.8.1) -- a slightly modified version: hsql-mysql-1.8.1-

molto.zip

o MySQL server (tested with 5.1.54 and 5.1.62)

5. GF server

o GF (tested with 3.3.3)

o Haskell (tested with ghc 7.0.4, cabal-install 0.10.2)

In this section we assume that the user has Apache, MySQL and GF server configurations

done. Please see Appendix for instructions on background settings.

3.1.2 Installation

3.1.2.1 Developer version

The prototype TT editor code is packaged as an Eclipse project archive

http://tfs.cc/molto/molto-tt-0.9-linux-eclipse-20120529.zip ready for import in Eclipse

(Helios).

Import the project in Eclipse. You should have Google Web Toolkit plugin (tested with

version 2.3.1). The runtime editor files are found in TT-0.9/www/editor/. To install the

runtime, the following files are placed under Apache2 server root (here /var/www) as shown.

/var/www/editor$ ls

grammars index.html org.grammaticalframework.ui.gwt.EditorApp WEB-INF

When you have placed the files under /var/www, then you can launch the project in Eclipse.

Choose from the menu Run -> Run configurations -> Web Application -> (new

configuration). In the tab Server untick Run built-in server. If you have put the files

in directory /var/www/editor, then the launch address will be

127.0.0.1:8888/editor/index.html?gwt.codesvr=127.0.0.1:9997.

Web server: Apache2 fastcgi and action modules must be enabled for the services. See

installation notes at the end for a sample Apache2 virtual host below to handle the services

from port 8888 (the default).

GF server: The editor requires also an installation of GF server. The server binaries are

content-service (for authentication and simple mysql database management) and pgf-

http://tfs.cc/molto/molto-tt-0.9-linux-eclipse-20120529.zip
http://tfs.cc/molto/hsql-mysql-1.8.1-molto.zip
http://tfs.cc/molto/hsql-mysql-1.8.1-molto.zip
http://www.molto-project.eu/wiki/living-deliverables/d32-molto-translation-tools-prototype/appendix-developer-notes
http://tfs.cc/molto/molto-tt-0.9-linux-eclipse-20120529.zip

service (for gf grammars). When compiling, the cabal option --global should be used;

then the GF service binaries get installed in /usr/local/bin. They can be copied/linked

under webserver (by default Apache2) fcgi-bin directory as follows.

/var/www/fcgi-bin$ ls -l

content-service -> /usr/local/bin/content-service

pgf-service -> /usr/local/bin/pgf-service

Database: The TT editor back end requires an installation of MySQL, HSQL and a Haskell

library hsql-mysql by Krasimir Angelov. Further instructions how to create a database for

MOLTO TT tools are in the installation notes.

The content service needs to read mysql database connection parameters from file

/usr/local/bin/fpath. It should be in the same directory as content-service and contain

four tokens, the mysql host and database names and the database owner credentials.

/usr/local/bin$ cat fpath

localhost moltodb moltouser moltopass

Then, the database is created by typing the following:

/usr/local/bin$./content-service fpath

Sign in: The prototype editor currently uses the Google authentication API for sign in.

Authentication and authorization for Google APIs allow third-party applications to get

limited access to a user's Google accounts for certain types of activities. A user needs to have

a Google account to sign in to the application.

3.1.2.2 User version

All back-end requirements are needed also for the user version. Now, instead of opening the

package in Eclipse, the only thing needed is to place the following files under Apache2 server

root (here /var/www) as shown.

/var/www/editor$ ls

grammars index.html org.grammaticalframework.ui.gwt.EditorApp WEB-INF

Then, to run the editor, just type the address

127.0.0.1:8888/editor/index.html?gwt.codesvr=127.0.0.1:9997 into browser.

3.1.2.3 Limitations

Ideally, the same login should work throughout the different parts of the distributed toolkit.

There should be some group scheme to set group level access restrictions. Eventually, we

may want to provide MOLTO single-sign-on as a replacement for Google authentication.

3.1.3 Grammar manager

The prototype editor has a simple grammar manager that is supposed to allow a user to

upload her grammars to the editor's grammar cache under her name. The cache kept is on the

editor server for reasons of speed and xss restrictions. The user chooses the current grammar

from among the cached grammars using a drop-down list.

3.1.3.1 Limitations

The grammar manager is not yet completed.

3.1.4 Document manager

The prototype editor has a simple document manager that saves a translated document in and

retrieves one from from the mysql database using ContentService. The current document is

saved in the database using a diskette icon on the editor page. The Documents tab shows the

currently saved documents and allows the user to load a selected document for continued

translation.

3.1.4.1 Limitations

Naming of documents is not yet supported. Both the grammar manager and document

manager remain to be linked to the TMS.

3.1.5 Term manager

The TT editor includes a simple tabular equivalents editor for searching and editing

translation correspondences from the web of data, including TermFactory services. The

equivalents editor is an independent web application that may also be used standalone or as a

plugin to other applications. When complete, the equivalents editor lets the user extend their

GF grammars with terms entered in the term editor and/or upload them as term proposals to

TermFactory.

3.1.5.1 Installation

The equivalents editor was built with the ExtJS javascript library. It can be downloaded from

http://tfs.cc/molto/molto-term-editor.tgz. Unpack it and put the whole molto_term_editor

directory under /var/www/ (or wherever your web server wants them, for example in

Windows C:\Program Files\Apache\htdocs). Open the file editor_sparql.html in a

browser.

Note that this is also included in the complete editor as one of the tabs. As for function, the

versions are identical. The screenshot below is from the standalone version.

http://tfs.cc/molto/molto-term-editor.tgz
http://tfs.cc/molto/molto-tt-0.9-linux-eclipse-20120529.zip

3.1.5.2 Use

The term editor consists of two tabular grids. In the first (left side) grid, enter a term in the

text input and opt for wider or narrower concepts. In the latter case (the default) the editor

shows on the right another grid of concepts that are classed narrower than the search term in

the data source (by default, OntoText FactForge) and their designations in a predefined

selection of languages. In the former case, the editor fills out the left side grid with concepts

that are classed in the data source as wider than the search term. Clicking on one of them

does a search for its subconcepts and terms, shown in the right side grid.

The term grid is editable and the editor remembers the user's edits to the cells in the grid.

3.1.5.3 Limitations

The data source and choice of languages are not yet user definable. The editor is not yet

connected to the TermFactory or GF grammar back ends.

3.1.6 Editor

In the current version, there is a sign-in box and tabs for grammars, documents, editor, and

terms, plus two to query and browse the loaded grammar. The latter services are familiar

from other GF front ends and based on the GF grammar Web API.

3.1.6.1 Use

After sign in, the editor calls content-service to show the logged in user's grammars from the

grammarusers mysql table in the grammar list. The user chooses a domain grammar. This

brings to view the initial vocabulary known by the grammar as fridge magnets to choose from.

Alternatively, the user can type or paste text in the editor window. At every new input, the

active translation unit is sent to the back end for translation, and the set of fridge magnets is

updated. When a translation unit is complete and translatable, it is simultaneously translated

to all the available languages and the translations are shown on the screen (in blue). If an

input is not parsable, the editor underlines the unparsable part. The user can back off to the

point of deviation using backspace. In addition, There is a button for clearing the input.

The editor guides the text author by showing a set of fridge magnets and offers

autocompletion to hint how a text can be continued within the limits of the current grammar.

3.1.6.2 Limitations

The prototype gives a first rough idea of how a web based GF translation editor could work.

At present, however, it remains oriented to a very small vocabulary (fridge magnets are not

apt to work well with thousands of words). It is also doubtful that the setup is fast enough for

the amount of interactivity caused at speeds involved in professional translation. A

reconsideration how the editor and the back end best play together is indicated. A related

limitation is the strict left-to-right orientation of the parsing. UGOT seems to be working on a

robust parser which allows other manners of combining parsing and editing. The proper

disposition of the translation result is not worked out yet.

3.2 The extended translation tools prototype

We now move on to the extended prototype. We first recapitulate how the extended

translation tools extend the one-translation scenario to a community of translators

collaboratively using and maintaining MOLTO translation tools.

3.2.1 User management

For more flexibility (as well as vendor independence), the open source LDAP (The

Lightweight Directory Access Protocol) based user management implementation from

GlobalSight has been adapted for MOLTO. It allows distinguishing different roles and user

groups, and controlling access to resources by roles. The GlobalSight user management

solution has been conservatively extended for the needs of MOLTO TermFactory users. The

following screenshot displays a user's roles as an ontology editor.

Term ontology management roles are defined per domain, where a domain is represented by

a regular expression on ontology URIs. The MOLTO GlobalSight user management system

lets a company project administrator create users and grant them MOLTO TermFactory

ontology read and write permissions. The TermFactory back end GateService reads the

permissions off the GlobalSight LDAP directory and database and controls access to

TermFactory content accordingly. If a user's credentials are not sufficient, TermFactory Gate

will not permit term ontology queries or commits. The MOLTO permissions come over and

above any constraints that ontology endpoints may impose on the content they manage. They

enable fine grained project level control on who is allowed to do what to shared or restricted

TermFactory resources.

3.2.2 Document management

The simple document manager of the prototype editor remains to be upgraded to a more

sophisticated XLIFF based document manager built using the GlobalSight document

management API. See the MOLTO TT API document for more detail.

3.2.3 Lexical resources

A key consideration for the usability of MOLTO translation is the ease with which its text

coverage can be extended by a user community. We need to pay great attention to

adaptability. The most important factor in extensibility is lexical coverage. Grammatical

coverage can be developed and maintained with language engineering, and grammatical gaps

can often be circumvented by paraphrasing. In contrast, paraphrasing is not a real option for

special domain terms. There are two cases to consider: either the abstract grammar misses

concepts, or concrete grammars for some language/s are missing equivalents. In the first case,

we need to extend the domain ontology and its abstract grammar. In the second case, we need

to add terms.

For both ontology and term management, we apport to MOLTO the TermFactory ontology

based terminology management concept. TermFactory is a system of distributed multilingual

term ontology repositories maintained by a network of collaborative management platforms.

It has been described at length in the TermFactory Manual at

http://www.helsinki.fi/~lcarlson/CF/TF/doc/TFManual_en.xhtml.

The user of the MOLTO translation editor has direct access through the equivalents editor to

querying and editing term equivalents for concepts already in available ontologies, either

already in TermFactory or 'raw' from the Web of Data, in particular, the OntoText services

serving data from FactForge repository.

http://www.helsinki.fi/~lcarlson/CF/TF/doc/TFManual_en.xhtml

3.2.3.1 Term management

Say for instance there is no equivalent listed for cheese in some language's concrete grammar

FooLang. The author/translator can use the equivalents editor to query for terms for the

concept food:Cheese in TermFactory or do a search through OntoText services for candidate

equivalents, or, if she knows the answer herself, submit equivalents through the equivalents

editor. The new equivalent/s are saved in the user's own MOLTO lexicon, and submitted to

TermFactory as term proposals for the community to evaluate.

3.2.3.2 Ontologies

If there is a conceptual gap not easily filled in through the equivalents editor, there is the

option of forwarding the problem to an appropriate TermFactory collaborative platform. This

route is slower, but the quality has a better guarantee in the longer run, as inconsistency or

duplication of work may be avoided. Say there is no concept in the domain ontology for the

new notion that occurs in the source text. In easy cases, new concepts can be added through

the equivalents editor, subclassing some existing concept in the ontology. In more complex

cases, where negotiations are needed in the community, an ontology extension proposal is

submitted through a TermFactory wiki. TermFactory offers facilities for discussing and

editing ontologies and their terms. In due time, them modified ontology gets implemented in

a new release of the GF domain abstract grammar.

3.2.3.3 Ontology-grammar interface

TermFactory ontologies are extensible and support reasoning. Instead of implementing

domain ontology-to-grammar bridges over and again for every new domain and application,

it seems more promising to take advantage of the semantic network structure of (term)

ontologies. Suppose verbalizations are already defined for a selection of upper or middle

level ontologies. Special domain ontologies can subclass them and thereby also inherit the

verbalizations that go with the superclasses and properties. UHEL is currently looking at the

generalization of the MOLTO museum case ontology-to-grammar mapping in this direction.

3.2.4 Translation editing

The TT translation editor is just a prototype. Different scenarios and platforms may call for

different combinations of its features. One way to go is to extend the prototype with further

tabs and facilities for CAT tool support. But there is the also the opposite alternative to

consider of calling MOLTO translation tool services from a third party editor. GlobalSight

has two built in translation editors, called popup editor and inline editor. The popup editor is

a Trados TagEditor lookalike, while the inline editor has something of the look and feel of

old Trados versions running WYSIWYG on Microsoft Word. The inline editor has been

implemented in javascript using the FCKEditor library. It might just be feasible to embed

MOLTO prototype editor functionalities into the GlobalSight editor(s). In the Globalsight

setup, there is already support for importing cut-and-dried MT translations from a MT service,

but here we are talking about something rather more intricate.

It is not immediately obvious which route would provide least resistance. From the point of

view of GF usability, finding a neat way of embedding GF editing functions in third party

translation editors could be a better sales position than trying to maintain a whole new

MOLTO translation environment. (Unless of course, the new environment is clearly more

attractive to targeted users than existing ones.) We may also try to have it both ways.

3.2.5 Reviewing/feedback

It was noted above that blind translation in the case of incomplete or inadequate coverage in

resource grammars can occasion a round of reviewing and giving feedback on the translations

before publication. This part of the process is in its main outlines familiar from the translation

industry workflow, and can be implemented as a variation of it. In the MOLTO workflow,

reviewer comments are not returned (just) to the human author/translator(s), but they should

have repercussions in the ontology and grammar management workflows. This part requires

modifying and extending the existing GlobalSight revisioning tools to communicate with the

MOLTO lexical resources and grammar services. The GlobalSight revisioning tools now use

email as the human-to-human communication channel. We probably want to use a

webservice channel for machine-to-machine communication, and possibly some web

commenting system as an alternative to email.

3.2.6 Grammar engineering

To the extent grammar engineering can be delegated to translation tool users, it must happen

transparently without requiring knowledge of GF. One way to do this is through what is

known as example-based grammar writing in GF. Example-based grammar writing is a new

GF technique for backward-engineering GF source from example translations. It can play a

significant role in the translation-to-grammar feedback cycle. This part of the TT API will be

borrowed from the MOLTO Grammar Developer Tools API.

The following sections describe what parts of the above list are already in place in the

prototype and what remains to do.

3.3 GlobalSight

GlobalSight (http://www.globalsight.com/) is an open source Translation Management

System (TMS) released under the Apache License 2.0. Version 8.2. was released on Sept 15,

2011. As of version 7.1 it supports the TMX and SRX 2.0 Localization Industry Standards

Association standards.[2] It was developed in the Java programming language and uses

MySQL database and OpenLDAP directory software. GlobalSight also supports computer-

assisted translation and machine translation.

According to the documentation, GlobalSight has the following features:

 Customizable workflows, created and edited using graphical workflow editor

 Support for both human translation and fully integrated machine translation (MT)

 Automation of many traditionally manual steps in the localization process, including:

filtering and segmentation, TM leveraging, analysis, costing, file handoffs, email

notifications, TM update, target file generation

 Translation Memory (TM) management and leveraging, including multilingual TMs,

and the ability to leverage from multiple TMs

 In Contect Exact matching, as well as exact and fuzzy matching

 Terminology management and leveraging

http://www.globalsight.com/

 Centralized and simplified Translation memory and terminology management

 Full support for translation processes that utilize multiple Language Service Providers

(LSPs)

 Two online translation editors

 Support for desktop Computer Aided Translation (CAT) tools such as Trados

 Cost calculation based on configurable rates for each step of the localization process

 Filters for dozens of filetypes, including Word, RTF, PowerPoint, Excel, XML,

HTML, Javascript, PHP, ASP, JSP, Java Properties, Frame, InDesign, etc.

 Concordance search

 Alignment mechanism for generating Translation memory from previously translated

documents

 Reporting

 Web services API for programmatic access to GlobalSight functionality and data

 Integrated with Asia Online APIs for automated translation

3.3.1 Installation

The latest full Linux install version of GlobalSight is 7.1.0.x . It can be updated to the current

version 8.2.2.0 using publicly available upgrade packages. The GlobalSight 7.2.0.0 base

version and the upgrade packages are available from SourceForge. (Copies are available from

tfs.cc under /srv/GlobalSight_backup/upgrade. More detailed install instructions, including

scripts to install LDAP for GlobalSight can be found at http://tfs.cc/globalsight-molto-install/.

A fully functional GlobalSight site also needs access to email services.

To upgrade from a working install of GlobalSight 8.2.2.0 to MOLTO GlobalSight, download,

unpack and run http://tfs.cc/molto/GlobalSight_Installer_8.2.2.1.zip.

There is also a complete MOLTO GlobalSight eclipse project archive at

http://tfs.cc/molto/molto-globalsight-8.2.2.1-linux-eclipse-20120529.zip containing the

source as well as the runtime.

3.3.2 MOLTO GlobalSight

MOLTO GlobalSight differs from GlobalSight out of the box in two ways. First, MOLTO

GlobalSight extends MOLTO user roles to terminology editing. It will be discussed in more

detail below in connection with TermFactory. Second, GlobalSight has two built in

translation editors, called popup editor and inline editor. The popup editor is a Trados

TagEditor lookalike, while the inline editor has something of the look and feel of old Trados

versions running WYSIWYG on Microsoft Word. The inline editor has been implemented in

javascript using the FCKEditor library. MOLTO GlobalSight extends the selection by

embedding the MOLTO TT editor as a third option on the editor menu:

http://tfs.cc/globalsight-molto-install/
http://tfs.cc/molto/GlobalSight_Installer_8.2.2.1.zip
http://tfs.cc/molto/molto-globalsight-8.2.2.1-linux-eclipse-20120529.zip

Clicking the option opens the Molto TT Editor in another window.

3.3.2.1 Limitations

As yet, content from the document under translation is not automatically imported into the

MOLTO TT editor. Content can be cut and pasted into the MOLTO TT editor.

3.4 TermFactory

The MOLTO TermFactory prototype consists of the generic TermFactory codebase plus

MOLTO related ontology content. At present, such content comprises the English-Finnish

WordNet ontology. Integration of the TermFactory back-end with the MOLTO KRI over

JMS is underway.

The TermFactory codebase consists of

 a term ontology query/editing back end run as an Axis2 Tomcat web service

 a Tomcat webapp that provides standalone term ontology query form and editor

 a MediaWiki installation with a TermFactory editor extension

 a link to the Disqus comment system

TermFactory is an architecture and a workflow for Semantic Web based, multilingual,

collaborative terminology work. What this means in practice is that it applies Semantic Web

and other document and language technology standards to the representation of multilingual

special language terms and the related concepts, and provides a plan for how such

terminologies can be collected, updated, and agreed about by professionals, not only

terminology professionals, all over the globe, during their everyday work on virtual work

platforms over the web. As a whole, TF could be termed a semantic web framework for

multilingual terminology work.

TF provides

 ontology and terminology formats

 format conversions

 query and edit tools

 repositories

 web services

for people to work on terms jointly or separately, building on the results of the work of others,

while maintaining quality and consistency between the different contributions.

As a prototype, there is a MediaWiki platform for human to human collaboration on

collectiong terminological data plus a TF editor plugin for conveying the results of the

collaboration into TermFactory ontology format. Here is a snapshot of a random MOLTO TF

concept in the Wiki.

3.4.1 Use

MOLTO TermFactory Mediawiki is used in the usual way a wiki works. In the demo

prototype, it has been populated with the Finnish-English Wordnet (ca. 100K concepts, 2

languages, ca. 200K terms per language). The pages are generated automatically on demand.

A Wordnet page currently only consists of a set of iframes and links to related lexical

resources on the web. In actual use, each category (Wordnet is one) may generate its own

boilerplate page design to help users describe and discuss the concepts of a category and their

http://blog.3kbo.com/2008/10/10/requirements-of-a-semantic-web-framework/

designations in different languages. A commenting system is in place that can be shared

between different platforms and applications. The discussion threads are indexed by the URI

of the relevant resource.

The TermFactory ontology content related to a resource can be queried and edited on the

Mediawiki platform using a TermFactory ontology editor extension, shown on top of the

page as the Entry Editor tab. Below is a snapshot showing the TF editor opened to the

TermFactory entry corresponding to the chosen WordNet term.

Instead of going by way of fill-in forms, the TermFactory approach is to support direct

WYSIWYG editing of localized ontology triples in a HTML textarea editor. The

TermFactory editor application uses the CKEditor javascript textarea editor for this purpose.

TF adds to the CKEditor standard release a special purpose plugin that adds TermFactory

specific action buttons and a menu to the standard issue.

While staying conceptually close to the original RDF format of the data, the TermFactory

editor layout is quite versatile. With suitable parameters, it can be tweaked to show ontology

content editable in shapes already familiar to professional terminologists. There is a

customisable, schema-aware insertion menu to help inserting relevant content, plus

customisable input and output layout templates. The editor is not limited to TermFactory

ontologies, as it is built on a general purpose textarea editor using a generic RDF to HTML

mapping.

A specialty of TermFactory is that it supports terminological reflexion. The metaterminology

used in the editor is not fixed, but can be changed by giving it a TF term ontology as

parameter. Using TF localization and bridge ontologies, not only the editor interface, but also

the content shown can be localized to a user community's conceptualization, language and

terminology. Here is the same editor page fetched after setting Mediawiki language settings

set to Finnish. Note how the terminological metalanguage used in the entry is now shown in

Finnish. (The localization is not complete, because the current localization ontology's

coverage has some gaps.)

3.4.2 Installation

The TermFactory source code is on svn at svn.it.helsinki.fi/repos/termfactory. A username

and password on the repository server is needed for checkout. To check out a path, choose

installation directory, go to it and do svn checkout

https://<username>@svn.it.helsinki.fi/repos/termfactory/path .

The compiled web archive files for TF are

io/lib/tf-io.jar The core library (offline tools)

ws/service/TFServices.aar The Axis2 webservice archive

ws/servlet/TermFactory.war The Tomcat webapp archive

https://%3Cusername%3E@svn.it.helsinki.fi/repos/termfactory/path

These three archives should be enough for deployment of TF in Linux from binaries on

Tomcat running Axis2. Installations of mysql and Jena TDB are needed for persistent storage

of ontologies on the TermFactory server. File upload services require prior installation of

WebDAV. Detailed TF source build and install instructions are available on request.

TermFactory MediaWiki is MediaWiki out of the box plus the TermFactory MediaWiki

extension, downloadable from the TermFactory svn path fe/TermFactory. The extension

requires installing TF back end, of course.

 Install MediaWiki 1.16 (or newer)

 Put everything under extensions/TermFactory

 Add require("$IP/extensions/TermFactory/TermFactory.php"); to

LocalSettings.php in the main directory

 go to page Special:EditTerm

3.4.3 Limitations

User management between MediaWiki, TermFactory services, and TermFactory WebDAV is

not fully in synch yet.

4. Integration

This section comments on the current status of the integration the different parts.

 Linking between the MOLTO TT translation editor and GlobalSight document

management and translation process This linking is important for usability, but is

closely connected to the further development of the TT editor and the MOLTO GF

back end. Alternatives range from cut and paste (already supported) to automatic

processing of XML/XLIFF document elements marked for MOLTO translation.

 Linking between the equivalents editor and TermFactory, in particular

o TermFactory back end to answer equivalents editor queries to populate the

editor from TF repositories

o TermFactory back end to allow equivalents editor to communicate user

additions to TF

A JSON format i/o API for converting term equivalent tables to/from TermFactory to

term ontology format is in place in TermFactory, so this item is almost complete.

 Communication between the equivalents editor, TermFactory and the GF grammar

services, in particular,

o conversion of lexical entries between TermFactory ontology format and GF

abstract grammar format

o updating of GF grammars with user defined entries

A mapping between MOLTO grammars and ontology formats has been defined by

UGOT on the Museum case. UHEL has started generalizing the solution.

 Linking between translation editor/s, translation leveraging tools (TM/termbank) and

GF services, in particular

o linking between the MOLTO (GlobalSight) comment/review system and

TermFactory

o linking between the MOLTO (GlobalSight) comment/review system and GF

grammar editing services

These steps are less urgent, so they will be left last.

Here is a figure showing some of the connections in the design.

5. Requirements on the GF grammar and

translation APIs

This section repeats the wishlist of requirements from Translation Tools on the GF grammar

and translation API.

Assume the GF translation goes to a reviser, working with or without another copy of the

MOLTO translation tool. The corrected translation, in XLIFF form, should be brought to

GF's attention. This calls for a new functionality from the GF grammar API: one which

corrects the grammar and lexicon software to produce the output required by the corrected

translation. This functionality is to be built on the GF example-based grammar writing

methodology.

In order for the corrections to converge, revised translations must accumulate so that the

newest corrections do not falsify earlier ones. The collection of manual corrections may

become ambiguous or inconsistent, which situation should also be recognised and brought to

the attention of a grammar engineer. Again, it is important to pay attention to user roles and

rights.

We may want to provide ways to override GF translations with canned translations. At the

translation tools level, this can happen by preferring TM translations over GF. We should

also consider ways to override compositional translations on GF grammar level.

Another requirement is translation time update of grammar, at least the lexicon, so that

translator's on the fly lexicon additions are possible.

If we want to support translating formatted documents using XLIFF, the minimum

requirement is that the GF translation API handles XLIFF inline tags.

Appendix: Developer notes

The complete MOLTO TT prototype editor code is downloadable as an eclipse (Helios)

project archive http://tfs.cc/molto/molto-tt-0.9-linux-eclipse-20120529.zip. The TT editor's

database back-end Haskell source code is packaged as http://tfs.cc/molto/molto-tt-server-0.9-

linux-20120529.zip.

Apache web server settings

Install apache and fastcgi with apt-get: sudo apt-get install apache2 libapache2-
mod-fastcgi

Here is a sample Apache2 virtual host below to handle the MOLTO TT back end services

from port 8888 (the default). The back end server is supposed to be in the same domain as the

editor to avoid cross-domain scripting violations. Copy the text below to
/etc/apache2/sites-available/default

<VirtualHost *:8888>

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www

 AddDefaultCharset UTF-8

 <Directory />

 Options FollowSymLinks

 AllowOverride None

 </Directory>

 <Directory /var/www/>

 Options Indexes FollowSymLinks MultiViews

 AllowOverride None

 Order allow,deny

 allow from all

 </Directory>

 # Allow fastcgi services from fcgi-bin.

http://tfs.cc/molto/molto-tt-0.9-linux-eclipse-20120529.zip
http://tfs.cc/molto/molto-tt-server-0.9-linux-20120529.zip
http://tfs.cc/molto/molto-tt-server-0.9-linux-20120529.zip

 <Directory "/var/www/fcgi-bin/">

 Options +ExecCGI

 AddDefaultCharset UTF-8

 SetHandler fastcgi-script

 </Directory>

 # Identify pgf-service as a fastcgi server

 FastCgiServer /var/www/fcgi-bin/pgf-service

 # Identify content-service as a fastcgi server

 FastCgiServer /var/www/fcgi-bin/content-service

 # Make action pgf-service handle pgf files

 Action pgf-service /fcgi-bin/pgf-service

 AddHandler pgf-service .pgf

 AddCharset UTF-8 .pgf

</VirtualHost>

After you have copied the above to /etc/apache2/sites-available/default, activate the

changes:

sudo a2enmod fastcgi

sudo a2enmod actions

Finally, restart apache by typing sudo service apache2 restart.

Some attested problems

1. Server doesn't start, error message is just "fail". If you copy and paste conf files, make

sure they don't override any previous confs you might have.

2. "Permission denied" error messages when trying to access (chmod 775) files in

/var/www.

Solution was to change the ownership group from root to all users: sudo chown -R

root:www-data /var/www/ (the name of the group might vary, you can see yours by

seeing which group has /var/www; do grep "/var/www" /etc/passwd).

GF server settings

Get the latest sources for GF from darcs repository. The instructions are here:

http://www.grammaticalframework.org/download/index.html

Assuming you have the source files, go to src/server and type sudo cabal install -f

content --global. It is important to use the option --global, because by default they are

installed in the home directory, and that doesn't go well with Apache. The binaries will be

installed in /usr/local/bin. Because of Apache, you need to set their owner group to the

apache group (depending on machine, e.g. www-data or apache).

The next step is to link the binaries to /var/www/fcgi-bin.

/var/www$ sudo ln -s /usr/local/bin/content-service fcgi-bin/

/var/www$ sudo ln -s /usr/local/bin/pgf-service fcgi-bin/

http://www.grammaticalframework.org/download/index.html

Some attested problems

1. gf-server-1.0 depends on fastcgi-3001.0.2.3 which failed to install.

If you get the following error, you must first have C library fcgi. First install libfcgi-

dev (sudo apt-get install libfcgi-dev), then try again to install PGF service

and content service: sudo cabal install -f content --global

Developer version settings

This applies only if you want to use the editor from Eclipse. Otherwise you don't need

any of this.

To test the TT editor under eclipse using GWT devMode, we found it necessary to recompile

content-service to add the gwt code server port parameter to page URLs. To do so activate

the following lines in ContentService.hs . We have been using eclipse 3.6 JEE with Google

Web Toolkit version 2.3.1.

-- devModeScriptName = (liftM2 (++)) (getVarWithDefault "SCRIPT_NAME" "")

(return "?gwt.codesvr=127.0.0.1:9997")

-- path <- devModeScriptName

A corresponding change is neeeded in the client code. Activate the following line in TT-

0.9/src/org/grammaticalframework/ui/gwt/client/SettingsPanel.java

// String defaultUrl = "/fcgi-bin/content-

service?gwt.codesvr=127.0.0.1:9997";

Launch settings for building and testing under devMode under eclipse (in

$HOME/workspace/.metadata/.plugins/org.eclipse.debug.core/.launches):

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<launchConfiguration type="com.google.gdt.eclipse.suite.webapp">

<booleanAttribute key="com.google.gdt.eclipse.core.RUN_SERVER"

value="false"/>

<stringAttribute key="com.google.gdt.eclipse.core.SERVER_PORT" value="80"/>

<stringAttribute key="com.google.gdt.eclipse.suiteMainTypeProcessor.

PREVIOUSLY_SET_MAIN_TYPE_NAME" value="com.google.gwt.dev.DevMode"/>

<booleanAttribute key="com.google.gdt.eclipse.

suiteWarArgumentProcessor.IS_WAR_FROM_PROJECT_PROPERTIES" value="true"/>

<listAttribute key="com.google.gwt.eclipse.core.ENTRY_POINT_MODULES">

<listEntry value="org.grammaticalframework.ui.gwt.EditorApp"/>

</listAttribute>

<stringAttribute key="com.google.gwt.eclipse.core.URL" value="editor"/>

<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_PATHS">

<listEntry value="/TT-0.9-ORIGINAL"/>

</listAttribute>

<listAttribute key="org.eclipse.debug.core.MAPPED_RESOURCE_TYPES">

<listEntry value="4"/>

</listAttribute>

<stringAttribute key="org.eclipse.jdt.launching.CLASSPATH_PROVIDER"

value="com.google.gwt.eclipse.core.moduleClasspathProvider"/>

<stringAttribute key="org.eclipse.jdt.launching.MAIN_TYPE"

value="com.google.gwt.dev.DevMode"/>

<stringAttribute key="org.eclipse.jdt.launching.PROGRAM_ARGUMENTS" value="-

startupUrl editor -war $HOME/workspace/TT-0.9/www/editor -noserver -

remoteUI "${gwt_remote_ui_server_port}:${unique_id}" -logLevel INFO -

codeServerPort 9997 org.grammaticalframework.ui.gwt.EditorApp"/>

<stringAttribute key="org.eclipse.jdt.launching.PROJECT_ATTR" value="TT-

0.9"/>

<stringAttribute key="org.eclipse.jdt.launching.VM_ARGUMENTS" value="-

Xmx512m"/>

</launchConfiguration>

Database settings

HSQL and HSQL-MySQL installation

First you need to install HSQL. It's in hackage, so it can be installed by typing sudo cabal

install hsql --global.

The public version of the Haskell MySQL package hsql-mysql-1.8.1 used by the TT

content service appears to have a bug that prevents multiple successive mysql procedure calls.

A debugged version of the package can be found at http://tfs.cc/molto/hsql-mysql-

1.8.1-molto.zip.

Install the debugged version:

 Download and extract the files in hsql-mysql-1.8.1-molto.zip

 Go to the top level directory, where you can find hsql-mysql.cabal

 Install by typing sudo cabal install --global

Some attested problems

1. HSQL 1.8.2 doesn't install. Solution: try HSQL 1.8.1. You can choose it by typing

sudo cabal install hsql-1.8.1 --global or downloading the version from

hackage.

MySQL server settings

In addition to the above, you need a mysql server. You can install one by typing sudo apt-

get install mysql-server.

Content-service uses a mysql database to store users, grammars and documents.

To create the database connection you need to do the following steps:

1. create the database for molto content service

2. create the content service database owner user

3. give that user all rights for the database

4. create key file fpath somewhere with the unholy quartet host db user pwd in format

known to haskell readFile.

5. call service with fpath as the only argument to create user, grammar and document

tables:
content-service fpath

http://hackage.haskell.org/package/hsql-1.8.2
http://tfs.cc/molto/hsql-mysql-1.8.1-molto.zip
http://tfs.cc/molto/hsql-mysql-1.8.1-molto.zip
http://tfs.cc/molto/hsql-mysql-1.8.1-molto.zip
http://hackage.haskell.org/package/hsql-1.8.1

Now create the database:

$ mysql -u root -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

...

mysql> CREATE DATABASE moltodb;

CREATE USER moltouser IDENTIFIED BY 'moltopass';

GRANT ALL on moltodb.* to moltouser;

Query OK, 1 row affected (0.02 sec)

mysql> Query OK, 0 rows affected (0.00 sec)

mysql> Query OK, 0 rows affected (0.00 sec)

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| moltodb |

+--------------------+

2 rows in set (0.00 sec)

mysql> quit

Bye

Next, create the database files.

/usr/local/bin$./content-service fpath

And then log in to mysql with the user moltouser.

mysql -u moltouser -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

mysql> use moltodb;

Reading table information for completion of table and column names

You can turn off this feature to get a quicker startup with -A

Database changed

mysql> show tables;

+-------------------+

| Tables_in_moltodb |

+-------------------+

| Documents |

| GrammarUsers |

| Grammars |

| Users |

+-------------------+

4 rows in set (0.00 sec)

If so the tables got created ok. There is nothing yet in the tables. After you first sign in with

your google account, then your user account will be in the table Users. You can query any of

the tables by writing select * from <table>.

Tabular editor (stand-alone version)

To install the tabular equivalents editor source, do this:

1. checkout the whole source code directory from

https://svn.it.helsinki.fi/repos/molto/trunk/molto_term_editor/ and

put it in any place where the apache server can reach, i.e. /var/www/.

2. download the extjs-4.0.2a package from http://extjs.cachefly.net/ext-

4.0.2a-gpl.zip, and uncompress it as extjs-4.0.3 under the directory

molto_term_editor/.

3. then, you can open the link

http://localhost/molto_term_editor/editor_sparql.html, if you put the

source code under /var/www/.

GlobalSight

The GlobalSight installation values are kept in $HOME/workspace/GS-
8.2.2.1/main6/tools/build/dist/GlobalSight/install/data/installValues.prope

rties. The following shows settings used for a MOLTO GlobalSight eclipse installation

(with $HOME replacing the installation directory and PASSWORD the password/s) :

#Mon May 28 22:52:03 EEST 2012

mailserver=mail.domain.com

system_log_directory_forwardslash=$HOME/workspace/GS-

8.2.2.1/main6/tools/build/dist/GlobalSight/logs

install_data_dir_forwardslash=$HOME/workspace/GS-

8.2.2.1/main6/tools/build/dist/GlobalSight/install/data

server_host=localhost

database_password=PASSWORD

database_server=localhost

database_username=globalsight

ldap_password=PASSWORD

ldap_install_dir=/var/lib/ldap

server_port=9090

ldap_host=localhost

gs_home=$HOME/workspace/GS-8.2.2.1/main6/tools/build/dist/GlobalSight

ldap_username=ldap_connection

admin_email=WelocalizeAdmin@domain.com

system4_admin_username=gsAdmin

ldap_base=globalsight.com

ldap_port=389

GS_HOME=$HOME/workspace/GS-8.2.2.1/main6/tools/build/dist/GlobalSight

cap_login_url=http\://127.0.1.1\:9090/globalsight

