
Grammar-Ontology Interoperbility - Final Work and Overview
Contract No.: FP7-ICT-247914
Project full title: MOLTO - Multilingual Online Translation
Deliverable: D4.3A Grammar-Ontology Interoperability -

Final Work and Overview
Security (distribution level): Public
Contractual date of delivery: -
Actual date of delivery: May, 2013
Type: Annex to deliverable
Status & version: Final
Author(s): Maria Mateva1, Inari Listenmaa3, Aarne Ranta2,

Ramona Enache2, Dana Dannélls2, Laura Toloşi1
Task responsible: Ontotext1
Other contributors: Ontotext, UGOT2, UHEL3

ABSTRACT
D4.3A is an annex to the D4.3 deliverable of WP4 of the MOLTO project. It aims to
address the reviewers’ remarks and recommendations for D4.3, as well as to present a
final overview of the prototypes built in the scope of MOLTO with respect to
grammar-ontology interoperabilty. D4.3A also describes the work after M24 and gives a
general overview of the achievements in MOLTO with focus on WP4 - Knowledge
Engineering, WP7 - Patents use case, and WP8 - Cultural Heritage use case.

Contents
1 Introduction 4

2 From GF Grammars to SPARQL 7
2.1 Mapping rules and an FSA auto-complete module 7

2.1.1 The mapping rules approach . 7
2.1.2 Data lexicons . 8
2.1.3 Auto-complete with FSA and GF 8
2.1.4 Advantages and disadvantages . 8

2.2 GF as means to generate SPARQL queries - YAQL 9
2.2.1 YAQL . 9
2.2.2 SPARQL generation model - Patents use case 10
2.2.3 SPARQL generation model - Cultural Heritage use case 11

2.3 Creation of a query language . 11
2.4 Discussion on levels of automation . 11

3 GF Grammars Generation from Ontology 12
3.1 The GQHB Tool and the Grammar-Ontology Helper for the GF Eclipse

Plugin . 12
3.2 Generation of GF grammars from RDF triples 13

3.2.1 Subjects and objects representation 14
3.2.2 Predicates representation and predicates types 15
3.2.3 Software implementation . 18

3.3 NL description generation from semantic results. Cultural Heritage use case 19
3.3.1 NL answer generation from semantic results 19
3.3.2 Object description. Cultural Heritage use case 19

3.4 Lexicon generation with TermFactory . 20
3.5 Discussion on levels of automation . 22

4 Comparison and Integration between KRI and TermFactory 23
4.1 Comparison . 23
4.2 Integration . 24

5 MOLTO Prototypes 26
5.1 MOLTO KRI . 26

5.1.1 Prototype description . 26
5.1.2 Grammar-ontology interoperability 26

5.2 MOLTO Patents . 29
5.2.1 Prototype description . 29
5.2.2 Grammar-ontology interoperability 29

5.3 MOLTO Cultural Heritage . 31
5.3.1 Prototype description . 31

2

5.3.2 Grammar-ontology interoperability 31

6 Porting KRI to New Applications 33
6.1 Strengths and limitations of our natural language interface to the semantic

repository . 33

7 Conclusion 35

8 References 36

9 Appendix A: Groups of RDF predicate types 38

3

1 Introduction
Within MOLTO we explore the interoperability between Gramatical Framework (GF)1

and ontologies. Following [Con11] we build three prototypes and surrounding tools, which
are described in [MI10], [Dam11], [CEDR12], and in the present document.

Semantic data is usually presented in the RDF standard2, in which facts are described
as sets of triples. Traditionally semantic data is queried via the SPARQL3 query language
for semantic databases. Hence, the gap between the natural language (NL) of a common
user and the semantic data remains open. Controlled languages are a possible logical solu-
tion, since they provide formal interpretation of a natural language query. In the current
document we present our exploration of Gramatical Framework as means to provide query
language and response verbalization of the semantic repository data.

Our goal is to build a retrieval system, given a specific ontology, that can be queried
with relevant NL quesions and can also return NL answers. GF fascilitates the process
by providing abstract representation of natural language query sentences, which can be
processed further. Additionally, it provides multilinguality at a comparatively low cost.
Figure 1 demonstrates the workflow of the projected retrieval system.

We explored the following directions in order to gain full interoperability between the
grammars and the semantic datastore:

1. Given an ontology (RDF graph), create grammars for queries that can be asked to
the retrieval system

2. Given a GF abstract representation of a query sentence, generate a corresponding
SPARQL query

3. Given an ontology (RDF graph), create grammars for answers that will be generated
from the RDF results. Given an RDF result, generate an NL answer via the GF
answer grammars

Mainly within WP4, but also as a continuation in WP7 and WP8, we experiment
with different approaches to utilize and possibly automate these steps. We achieve semi-
automated SPARQL generation and template-based grammar generation. We build tools
and prototypes, which are presented in Section 5 and Section 3.1. Our experience shows
that the more GF is directly involved in the interoperability, the more flexible and reliable
the technology is.

GF transforms the NL query parsing to abstract representation, which can more easily
be converted to other machine and NL languages. Most of the steps are done automati-
cally, see Figure 1. The transition between NL and GF concrete grammar and vice versa

1http://www.grammaticalframework.org/
2http://www.w3.org/RDF/
3http://www.w3.org/TR/rdf-sparql-query/

4

http://www.grammaticalframework.org/
http://www.w3.org/RDF/
http://www.w3.org/TR/rdf-sparql-query/

Figure 1: GF-Ontology interoperability

is done directly by the GF parser. The parser transforms the GF concrete representation
to GF abstract, as well as from a call to GF concrete grammar to a NL answer. The
semantic datastore, which in our case is OWLIM4, is responsible for the RDF answer of
the SPARQL query.

The first and the third steps are very similar as there an existing RDF graph is mapped
4http://www.ontotext.com/owlim

5

http://www.ontotext.com/owlim

to a GF grammar. Our aproach is to create grammars that map entities from the ontology
with the help of predefined templates. Section 3 explains this in details. The transition
from the GF abstract representation to SPARQL query has been explored in different
ways, two of which have been chosen and are presented in Section 2. These include map-
ping rules between GF syntax trees and GF SPARQL grammars, exploring SPARQL as
another ‘natural’ language. A third approach, with discursive patterns, is described in
[CEDR12].

Based on our approaches for interoperability, we build a retrieval system prototype,
called the (MOLTO) Knowledge Representation Infrastructure (KRI)5, which uses GF
for natural language questions and answers. The KRI prototype is also the basis of two
MOLTO use cases, the WP7 Patents prototype6 and the WP8 Cultural Heritage(Museum)
prototype7 (see Sections 5.2 and 5.3), where we develop further its ideas.

At the end of this document, we describe potential usage of lexicon generation, lexicon
generation with TermFactory and integration between KRI and TermFactory. The steps
to customize the KRI to a new specific domain are given in Section 6, according to the
recommendations from the M24 Review Report.

5http://molto.ontotext.com
6http://molto-patents.ontotext.com/
7http://museum.ontotext.com/

6

http://molto.ontotext.com
http://molto-patents.ontotext.com/
http://museum.ontotext.com/

2 From GF Grammars to SPARQL
The first direction of interoperability, which we explore, is the generation of SPARQL8

queries, given a specific query language and GF grammars that define it. This task has no
straightforward solution. We have integrated two different approaches in our prototypes:

• mapping rules that use a predefined domain specific language;

• generation of SPARQL via GF translation, regarding SPARQL as another “natural”
language.

In the child projects of MOLTO KRI, the first technology was abandoned and the second
was developed further.

2.1 Mapping rules and an FSA auto-complete module
Our initial approach for NL-to-SPARQL generation was to build a model of explicit map-
pings between GF abstract trees and SPARQL queries. This was achieved with mapping
rules, for which we built a domain specific language and parser. We didn’t use any di-
rect communication with the GF service or process. Instead, we applied automatically
generated trees and hand-written rules. Additionally, we built a custom auto-complete
mechanism - based on a finite state automaton (FSA), which loaded all previously gen-
erated trees and their linearizations as strings. It used lexicons for different types (e.g.
Person, Location, Organization, Drug, etc.).

As a result, we found that the mapping rules were a redundant level of abstraction and
did not explore GF in the best possible way. However, the auto-complete based on FSA
proved to be useful and fast enough, so it remained part of our MOLTO prototypes (See
Section 5).

2.1.1 The mapping rules approach

We built a small domain specific language and parser for the mapping rules. The language
aimed to provide syntactic sugar for some generalized mappings between GF and SPARQL,
as briefly described in [CEDR12]. The following rule is an example for such a mapping
rule from the KRI prototype:

//all people with their aliases
//all organizations with their aliases
(QSet ?X) | single (X) && type (X) == ”” && name (X) != Location −−>
construct WHERE {

sparqlVar (name (X)) rdftype () class (name (X)) .
sparqlVar (name (X)) property (hasAlias) sparqlVar (name (X)) ## ” a l i a s ” . } ;

Here the left-hand side is the GF parsed tree syntax (QSet ?X). name(X) gives the type
of the entity X, e.g. Location, Organization, Person, Job Title. On the right-hand side of

8http://www.w3.org/TR/rdf-sparql-query/

7

http://www.w3.org/TR/rdf-sparql-query/

the rule we declare a “construct” query that corresponds to the QSet sententces. We use
sparqlVar to get the name of the variable (e.g. ?name), the class function - to return its
RDF type, and the property function - to return the full name of the “hasAlias” predicate.

The example demonstrates how we created dynamic generation of SPARQL queries,
depending on their type, which is inferred from the data lexicon type we allow for this
abstract GF tree.

2.1.2 Data lexicons

Data lexicons are typed lexicons that are previously extracted from the semantic repository.
They can be used both for the auto-complete module (see Section 2.1.3) and the concrete
GF grammars. A good example of this scenario is the patents prototype ([MGE+13]),
where we have 8 dictionaries: Drugs, Active Ingredients, Patent Numbers, Application
Numbers, Routes Of Administration, Dosage Forms, TE Codes and Markets. The list of
entities is extracted from aligned ontologies in the biomedical domain. They are integrated
both in the grammars and in the auto-complete module. We translate the lexicons from
English into French and German with statistical machine translation (SMT) by UPC.
It has been possible due to the translation of the semantic annotations as described in
[MGE+13]. This way we achieve completeness of the French and German query languages.
In the cultural heritage use-case acquiring such data is more challenging since we need
multilingual values in 15 languages. Our progress is reported in [MGE+13] and [DDE+13].
We provide more information on lexicon extraction in Section 3.4.

2.1.3 Auto-complete with FSA and GF

The three Ontotext prototypes use a custom auto-complete module, which is based on
a minimalistic acyclic FSA fed with linearized GF grammar trees and patterns. The
resources are preliminary generated from the GF grammar of the target language(s) and
mainly consist of generated sentences from the grammar and data lexicons for each data
entity type. The latter are data types that are retrieved from the RDF database. The data
lexicons are useful for the generation of both the FSA resources and the GF grammar itself.
In fact, the initial motivation for using FSA, instead of the GF auto-complete, is to avoid
getting heavy lexicons from a large semantic repository, whose entities would be too many
to be efficiently supported by GF. As a result, we found FSA very useful because of the
control it gives to the displayed queries and also the control of suggested auto-completion
types.

2.1.4 Advantages and disadvantages

The mapping rules allow certain dynamic generation of SPARQL. However, they are dif-
ficult to debug and maintain when there are changes in the grammar or in the desired
SPARQL syntax. The parser for the rules also requires support. Moreover, this approach
does not fully benefit from GF. For example, GF can be used for direct translation to
SPARQL so the mapping rules and the invocation of their parser become redundant.

8

Figure 2: MOLTO KRI autocomplete in the MOLTO-patents prototype

2.2 GF as means to generate SPARQL queries - YAQL

Within MOLTO, the consortium partners came up with the idea to review SPARQL as a
natural language from a GF point of view. This means that, in addition to abstract and
concrete grammars for all natural languages, we create a SPARQL concrete grammar and
we observe SPARQL as a natural language into which we need to translate.

2.2.1 YAQL

In the final year of MOLTO, UGOT contributed to WP4 with the creation of the YAQL
(“yet another query language”) grammar module, which provided the basis for domain
specific SPARQL generation. The implementation of a query language in YAQL is ex-
plained in [Ran12]. YAQL has straightforward abstract syntax generation from ontology,
with just the minimum of lexical types:

Kind : usually CN
Entity : usually NP
Property : can be VP , AP , ClSlash
Relation : VPSlash built from V2 , AP , comparatives

9

Figure 3: SPARQL as another GF language

2.2.2 SPARQL generation model - Patents use case

The SPARQL generation model of WP7 was described in [MGE+13]. It is the first im-
plementation of SPARQL generation via GF that we applied in a KRI-based prototype.
The model uses YAQL. It allows the mapping a GF function (abstract query expression)
to a SPARQL query. The example below shows the astract, NL concrete and SPARQL
concrete representations of the “show patents that mention X and Y” query as developed
for the PatentQuery9 grammar.

Abstract syntax:

QShowConceptXY : Concept −> Concept −> Query ;

Concrete natural language interface:

QShowConceptXY c1 c2 = mentionP (mkNP and_Conj c1 c2) ;

Concrete SPARQL syntax:

QShowConceptXY c1 c2 =
{s = ”PREFIX pkm: <http: //proton . semanticweb . org/protonkm#> $n

PREFIX psys : <http: //proton . semanticweb . org/protonsys#> $n
CONSTRUCT { $n ?doc pkm:mentions ?x . $n ?doc pkm:mentions ?y } $n
WHERE { $n ?x psys:mainLabel ” ++ c1 . s ++” . $n
?doc pkm:mentions ?x . $n ?y psys:mainLabel ” ++ c2 . s ++” . $n
?doc pkm:mentions ?y . $n } ” } ;

9svn://molto-project.eu/wp7/query/grammars

10

The SPARQL generation in this case is similar to the mapping rules but it relies on
GF for translation and does not involve additional layers of pre-defined rules.

2.2.3 SPARQL generation model - Cultural Heritage use case

The SPARQL generation model of WP8 is described in [DRE+13] and [DDE+13]. It
uses YAQL as well but it is more dynamic than the one in WP7. The approach allows
parametrized building of SPARQL queries. The example below is from the QueryPainting
grammar10, QueryPaintingSPARQL.gf :

QPainter p = {wh1 = ”? painter ” ; prop = p ; wh2 = ” painting:createdBy ? painter . ”} ;
QYear p = {wh1 = ”?date” ; prop = p ; wh2 = ” painting:hasCreationDate ?date . ”} ;
QMuseum p = {wh1 = ”?museum” ; prop = p ; wh2 = ” painting:hasCurrentLocation ?museum . ”} ;
QColour p = {wh1 = ”? co lor ” ; prop = p ; wh2 = ” painting:hasColor ? co lor . ”} ;
QSize p = {wh1 = ”?dim” ; prop = p ; wh2 = ” painting:hasDimension ?dim . ”} ;
QMaterial p = {wh1 = ”? material ” ; prop = p ; wh2 = ” paint ing:hasMater ia l ? material . ” } ;

We believe that this is the direction in which SPARQL generation from GF grammars
should be developed when it needs to be applied in different domains. Similar ideas are
presented also in WP6 - Sage syntax generation, WP11 - ACE syntax generation, and
WP12 - the business modeling domain grammars in the Be Informed Studio.

2.3 Creation of a query language
Our experience in the KRI-based prototypes shows that the better the allowed questions
cover actual relations in the ontology graph, the better the query language is. This gives
us motivation to search for query patterns that adequately cover the predicates in the RDF
representation of the ontology. The verbalization methodology suggested in Section 3.2 can
utilize automatic example-based creation of queries for the ontology by selecting probable
GF (query) patterns for the different types of RDF predicates. But, due to the variety of
possible question types(“what”, “which”, “who”, “how many”, etc.), this method cannot be
highly precise and the resulting grammars would need in-depth expert revision. Hence, the
semi-automatic approach remains the optimal solution to the creation of a query language.

2.4 Discussion on levels of automation
Adopting GF as described in Section 2.2 allows direct translation from natural language
to SPARQL (or any other machine language, such as ACE or Sage languages). The level
of automation depends on the complexity of the required query language and on the im-
plementation of the SPARQL generation grammars. Hence, a more dynamic approach
requires more efforts of GF experts. We also observe the need of a (simple) testing frame-
work that can validate the soundness of the generated machine language. In any case, this
model is preferable to the earlier approach of mapping rules.

10svn://molto-project.eu/wp8/d8.3/grammars

11

3 GF Grammars Generation from Ontology
In the scope of WP4, we have chosen to represent ontologies in RDF because each fact in
the RDF graph has its own semantics. It is defined by a triple of subject–predicate–
object, which we aim to verbalize in the following ways:

• SUBJECT is PREDICATE PREP OBJECT. Example: “Ontotext is located in Bulgaria.”

• SUBJECT HAS-PREDICATE OBJECT. Example: “Sweden has capital Stockholm.”

• SUBJECT VERB-PREDICATE OBJECT. Example: “Hilton Group PLC owns Livingwell.”

GF is very suitable for verbalizing such sentences as well as for providing their multilin-
gual representation. Moreover, GF allows multiple linearizations of the same grammatical
entity(e.g. “all patents”, “show all patents”, “what is the information about all patents”,
etc.). For a better perspective on this, fist we provide additional information on our pre-
vious work and its development throughout MOLTO.

3.1 The GQHB Tool and the Grammar-Ontology Helper for the
GF Eclipse Plugin

The GQHB tool, described in [CEDR12], is extended to a wizard as part of the GF Eclipse
plugin([Cam12]). This work logically belongs to WP2 but due to its late completion it could
not be included in the respective deliverables. The wizard manual is publicly available at
Github11.

The wizard functionality is almost identical to the GHQB tool. It connects to a
SPARQL endpoint, inspects the ontology and provides lists of classes as well as their
respective instances. It also allows the user to create GF categories from the selected
classes and GF entities from these categories. These entities are verbalized with the RDF
labels of the instances from the ontology. This generation is based on a template defined
by a GF expert. The structure of the xml template is:

− ” templates ” − root element
− ”template” − template for a single query

− ” pattern ” − the query displayed to the user
− ”fun” − abstract grammar `s initial functions (without the generated ones)
− ” l i n c a t ” − concrete (English) grammar `s initial linearization categories
− ” l i n ” − concrete (English) grammar `s initial linearizations
− ” sparql ” − SPARQL query , usually with pattern
− ” sparql−l i n ” − concrete SPARQL grammar `s initial linearizations

An example of the template can be found at svn://molto-project.eu/wp4/projects/
molto-core/molto-repository-helper/resources/template.xml. As a result, three
concrete grammars are generated: English concrete (or any other language), SPARQL
concrete and an abstract grammar.

11https://github.com/GrammaticalFramework/gf-eclipse-plugin/blob/master/README_
ontology-grammar.md

12

svn://molto-project.eu/wp4/projects/molto-core/molto-repository-helper/resources/template.xml
svn://molto-project.eu/wp4/projects/molto-core/molto-repository-helper/resources/template.xml
https://github.com/GrammaticalFramework/gf-eclipse-plugin/blob/master/README_ontology-grammar.md
https://github.com/GrammaticalFramework/gf-eclipse-plugin/blob/master/README_ontology-grammar.md

A screenshot of the wizard GUI is shown on Figure 4.

Figure 4: Grammar-Ontology Helper - selection of instances of classes to generate GF
grammars

The motivation for such a tool and wizard is to enable GF non-experts to create GF
grammars on-line. In fact, this method is closely related to lexicon generation. However,
the creation of the templates requires GF expertise in the generic grammar model creation.

3.2 Generation of GF grammars from RDF triples
Throughout the work on the MOLTO KRI prototype (see Section 5.1), and inspired by
the idea of a generic grammar, described in [CEDR12], we created a generator of generic
grammar that explores ontology facts and generates (data) grammars for them. The auto-
matic generation of grammar entities and semi-automatic generation of grammars for the
RDF predicates (GF expressions) comprise our model for verbalization of RDF triples.

The idea continues from earlier work within the MOLTO project. [Ena10] describes the
translation of the SUMO12 axioms to GF, the linearizations written mostly manually. Our
approach automatizes some of the work, taking advantage of the usually consistent naming

12Suggested Upper Merged Ontology

13

conventions of the RDF predicates. [Lis12] is a feasibility study, which describes different
uses of ontologies in lexicon management. As a conclusion, generation of GF grammars
from RDF data turned out to be promising. Other directions taken by [Lis12] and the
University of Helsinki(UHEL) include pure lexicon generation (see Section 3.4).

We use the RDF objects and subjects with their URIs and labels to create respectively
abstract and English concrete GF representations. The verbalization of predicates is further
investigated in the final year of MOLTO. It has also been of scientific interest to external
research groups ([AGL13]).

The motivation for this is that RDF predicates are usually meaningful and follow a
strict naming convention, especially in a single ontology. This is not always true and
sometimes RDF predicates names are in different languages (e.g. in DBpedia13).

Hereby we present a method to verbalize RDF predicates, in case that they are in
English and follow a naming convention. It is based on in-depth analysis of 1700+ predicate
names from 10 random public repositories. It is worth pointing that the repositories are
not pre-selected in any manner. A number of observations and heuristics lead to the
separation of the predicates into groups that allow easier verbalization via example-based
GF grammars. We describe the results in 3.2.2.

For predicates in other languages we can utilize similar algorithm but for some of them
it requires additional morphological analysis.

3.2.1 Subjects and objects representation

For RDF subjects and objects, GF representation is straightforward - all are presented
in GF by the Entity category. This model can be further extended, for example by defining
more specific type (GF category) of the Entity and thus have lots of categories (Person,
Location, Organization, etc.). These categories usually are named after the respective class
in the ontology, from which we take instances for the grammar. We tried this deferentiation
in the MOLTO KRI prototype but we found no practical benefit in splitting the categories
into the grammar, except for easier lexicon types splitting, which facilitates the auto-
complete technology.

The corresponding abstract and concrete grammar representation for the first five PRO-
TON ontology14 class instances in alphabetical order is as follows:

Abstract syntax:

cat Entity ;

fun
Airline_T_1 : Entity ;
Airline_T_10 : Entity ;
Airline_T_10_0 : Entity ;
Airline_T_10_1 : Entity ;
Airline_T_10_2 : Entity ;
. . .

13http://dbpedia.org/
14http://www.ontotext.com/proton-ontology

14

http://dbpedia.org/
http://www.ontotext.com/proton-ontology

Concrete syntax:

lincat
Entity = Str ;

lin
Airline_T_1 = ”Japan Ai r l ine s System Corporation” ;
Airline_T_10 = ”Cathay Pac i f i c Airways , Ltd . ” ;
Airline_T_10_0 = ”Cathay Pac i f i c Airways , Ltd . ” ;
Airline_T_10_1 = ”Cathay Pac i f i c Airways , Limited” ;
Airline_T_10_2 = ”Cathay Pac i f i c Airways” ;
. . .

The linearization data is taken from the English RDF labels.
The Entity category serves to represent ontology subjects and predicates in GF. To

achieve complete automation of the GF verbalization of an RDF triple, we need to focus
on the predicates. In the case of MOLTO KRI we provide representation for a number of
useful predicates. They are chosen after observation of the graph results to each construct
query15.

Normally the user does not need to verbalize all predicates. For example, rdf:type is
one we preferred to skip, as “John Smith has type Person.” is useless information in our
case.

3.2.2 Predicates representation and predicates types

The abstract representation clearly has automatable parts - e.g. the one that defines the
predicates. The next example is a shortened version of the GF abstract grammar for the
PROTON predicates verbalized in the MOLTO KRI prototype.

cat
Phrase ;
Property ;
[Property]{2} ;

fun
text: Entity −> Property −> Phrase ;
and: [Property] −> Property ;

activeInSector: Entity −> Property ;
childOrganizationOf : Entity −> Property ;
hasCapital : Entity −> Property ;
holder : Entity −> Property ;
locatedIn : Entity −> Property ;
owns : Entity −> Property ;
. . .

The corresponding concrete English syntax also reveals repetitive behaviour. This is
proved by the GF patterns for activeInSector and locatedIn, as well as the one for
hasCapital and holder. The latter is verbalized as “has holder”. Certainly, GF allows

15construct queries return graph over certain description. Hence, they always return RDF triples.

15

multiple verbalizations of a single pattern and this flexibility can contribute to more diverse
expression of the produced answer language.

lincat
Phrase = S ;
Property = VPS ;
[Property] = [VPS] ;

oper s2e : Str −> NP = \s −> symb (mkSymb s) ;

lin
BaseProperty = BaseVPS ;
ConsProperty = ConsVPS ;
and ps = ConjVPS and_Conj ps ;
text x y = PredVPS (s2e x) y ;

activeInSector x = MkVPS (mkTemp presentTense simultaneousAnt)
positivePol (mkVP (mkA2 (mkA ” act ive ”) (mkPrep ” in ”)) (s2e x)) ;

hasCapital x = MkVPS (mkTemp presentTense simultaneousAnt)
positivePol (mkVP (mkVPSlash have_V2) (mkNP (mkCN (mkCN (mkN ” cap i ta l ”)) (s2e x)))) ;

holder x = MkVPS (mkTemp presentTense simultaneousAnt)
positivePol (mkVP (mkVPSlash have_V2) (mkNP (mkCN (mkCN (mkN ” holder ”)) (s2e x)))) ;

locatedIn x = MkVPS (mkTemp presentTense simultaneousAnt)
positivePol (mkVP (mkA2 (mkA ” located ”) (mkPrep ” in ”)) (s2e x)) ;

owns x= MkVPS (mkTemp presentTense simultaneousAnt)
positivePol (mkVP (mkV2 ”own”) (s2e x)) ;

. . .

Having the answer grammar generated, what remains is to have it verified by an expert.
Afterwards, a call to it is made for each RDF triple from a result set that has to be
verbalized. Our MOLTO KRI prototype uses the below linearization call to the GF engine:

l text <subject> (<predicate> <object>)

<subject> is of type Entity and predicate and object define the Property. The
text function, defined as text x y = PredVPS (s2e x) y, takes both as a parameter and
formalizes the expression with GF means. The final answers are passed to the Forest UI.
Examples are shown in Figure 5.

In order to have a reliable verbalization of RDF predicates, we had to find patterns
that we could apply to predicate names. Hence, it was necessary to divide the predi-
cates, according to a GF pattern compatible type. We explored 10 public repositories
with above 1700 unique predicates, made analysis of the common predicates patterns and
extracted several most common patterns of predicate names. The initial research showed
that predicates could be divided into 3 general groups and about 20 smaller ones.

For those that did not fit in any sepcific group, we suggested a compromise generic
pattern that would work in general, but would not benefit from the grammatical flexibility
of GF. Predicates that fall in the general pattern category (see types A0, B0, and C0 in
Appendix A) are the best candidates for revision by GF experts and for being assigned
custom GF patterns.

16

Figure 5: MOLTO KRI: verbalizaton of RDF triples

In Table 1 we list the three general types with their GF generalizations.
After a stable initial pre-processing, every predicate is normalized to one of the above

classes. For example, all noun-prepositions, e.g. “parentOf” are normalized to “is parent
of”, all noun-nouns, e.g. “systemProperty” are normalized to “has system property”.

The English GF patterns for the three major types are proposed on Figure 6.
All patterns we have found are listed in Appendix A. E1 and E2 stand for entities

as described in the previous section (3.2.1). The X keyword stands for both nouns and

17

Group name Summary Description
A “HAS” predicates Predicates that are most easily described by

“has quality” phrase.
B “IS” predicates Predicates that are most easily described by

“is quality preposition” phrase.
C “Other verbs” group Predicates that start with verbs other than forms

of “to be” and “to have”.

Table 1: General groups of RDF predicates

Figure 6: Patterns to verbalize GF types

adjectives. The motivation for this assumption is that in English the noun-noun phrases
and adjective-noun phrases behave similarly. For example “system properties” and “useful
properties” behave in the same way in a sentence. Unfortunately, this assumption is in-
correct for languages like German, French, Finnish, Bulgarian and many others, where one
can expect significant differences such as reverse word order or need of gender agreement.
Hence, if this direction of pre-processing is kept in the future, some grammatical analysis
will be necessary for languages other than English. It will split the example types into a
larger number.

Nevertheless, our observations are that the majority of predicates fit in few of the types
described in Appendix A, Table 2. For example, A1, A2, A4, B1 and C1 comprise about
88% of all predicates.

The obvious problems with this approach are that we cannot guarantee complete cor-
rectness, as ontologies are designed by humans and can have many name convention floats,
or just new predicate structures. Also, predicate semantics is sometimes ambiguous. For
example, A–contains–B can be a design to both“A contains B.” and “B contains A.” as
explained in ([MS06]).

3.2.3 Software implementation

We have implemented a utility in java that takes a SPARQL endpoint as a parameter and
defines the types for its RDF predicates. When we have GF examples for all types, it is
trivial to generate the GF files, which represent automatically generated English grammar.
This architecture is derived from the Wkb grammar([MRM13]), created in collaboration by

18

Ontotext and the University of Gothenburg. The grammar is mostly automatically gener-
ated and manually edited by GF experts. The source of the grammar is available at svn://
molto-project.eu/wp4/projects/molto-kri/natural-language-queries/resources/
grammars/answer and consists of:

• Abstract GF grammar for the predicates

• Concrete English GF grammar for the predicates

• Abstract GF grammar for the data (entities from the ontologies - both subjects and
objects)

• Concrete English GF grammar for the data - with the English labels from the ontology

3.3 NL description generation from semantic results. Cultural
Heritage use case

Internally we have drawn the conclusion that verbalization of simple facts is not quite
useful if we cannot generate a whole object description.

3.3.1 NL answer generation from semantic results

One option for an object description is to verbalize all facts in the molecule of a concrete
ontology instance to a certain depth. For example, on Figure 5 the query results

• Islamic State of Afghanistan has capital Kabul.

• Islamic State of Afghanistan is also known as Kingdom of Afghanistan.
are the verbalized triples returned to the query:

construct where {
?subject ?predicate ?object .
?subject rdfs:label ” Is lamic State of Afghanistan” .

}

where we have a description of the molecule “Islamic State of Afghanistan” with depth 1.

3.3.2 Object description. Cultural Heritage use case

In the WP8 prototype on cultural heritage, we generate paintings descriptions ([DRE+13]).
For each painting, we execute a single call to the GF description function, which takes the
following types of parameters: painting(URI), painter, title, length, height, year,
material and museum.

The NL queries are translated to SPARQL queries against a single ontology - paint-
ing.owl. Each query that generates description is a select query with (a subset of) the
above list of parameters. The base query, which answers “show everything about all paint-
ings”, is:

19

svn://molto-project.eu/wp4/projects/molto-kri/natural-language-queries/resources/grammars/answer
svn://molto-project.eu/wp4/projects/molto-kri/natural-language-queries/resources/grammars/answer
svn://molto-project.eu/wp4/projects/molto-kri/natural-language-queries/resources/grammars/answer

PREFIX painting: <http: //spraakbanken . gu . se/ rdf /owl/ painting . owl#>
PREFIX rdf: <http: //www.w3. org/1999/02/22− rdf−syntax−ns#>
PREFIX rdfs: <http: //www.w3. org /2000/01/ rdf−schema#>

#common parameters list for description generating queries
SELECT DISTINCT ?painting ?title ?material ?author ?year ?length ?height ?museum
WHERE {
?painting rdf:type painting:Painting ;

rdfs:label ?title ;
painting:createdBy ?author ;
painting:hasCurrentLocation ?museum ;
painting:hasCreationDate ?date ;
painting:hasDimension ?dim .

?author rdfs:label ?painter .
?date painting:toTimePeriodValue ?year .
?dim painting:lengthValue ?length ;

painting:heightValue ?height .
?museum rdfs:label ?loc .

} LIMIT 200

The answer generating call to the GF DPainting is of the form:

l −unlextext −lang=”TextPaintingEng” DPainting (PTitle
TAdoration_of_the_Magi__28Vel_C3_A1zquez_29)

PDiego_Velazquez NoPaintingType NoColours (MkSize (SIntInt 127 204)) (MkMaterial MCanvas) (
MkYear (YInt 1619)) (MkMuseum MMuseo_del_Prado)

In our method we follow the “convention over configuration” paradigm.
TAdoration of the Magi 28Vel C3 A1zquez 29, PDiego Velazquez, MkMuseum MMuseo del Prado
are preliminary generated in the GF grammar from the ontology, using the instances’ URIs
also for their representation in the grammar. (The first letter(s) of the instance anme in
the grammar are used to define its type, mostly for user’s better orientation). The number
parameters are directly passed to the GF engine as integers.

This GF request generates the following English description.

”The Adoration of the Magi was painted on canvas by Diego Velazquez in 1619. I t measures 127 by
204 cm. This work i s displayed at the Museo del Prado . ”

Except for English, we also support 14 other natural languages, whose grammars are
created manually. This model allows direct translation of the queries and the returned
answers, which is easily demonstrated with Museum prototype user interface.

3.4 Lexicon generation with TermFactory
As a complementary strategy to grammar creation, University of Helsinki has focused on
lexicon generation. Lexicons translation can very well enforce the automatic grammar
generation for different languages, when we have a base for English (or other languages).
UHEL has defined a format from which there is a conversion to GF lexicon. This format
is used in TermFactory (TF)[Car13], a platform for multilingual terminology management
created in UHEL.

20

The structure of the TF top ontology schema is shown in Figure 7. Base forms (yellow
rectangles) are linked to expressions (yellow ovals), and expressions are linked to concepts
(blue ovals) with relations in green. The green relation is represented by triples, whose sub-
ject is of type term1:lang-EXP-POS - ont-TERM, for instance term1:en-dog-N - ont-Dog;
the predicate term:hasDesignation marks the expression, and term:hasReferent - the
concept.

Figure 7: TermFactory top ontology schema

Below is an example showing the mapping between the Czech expression for “Patago-
nian toothfish” to its concept in DBPedia:

term1:cs−ledovka_patagonská−N_−_dbp−Patagonian_toothfish
a term:Term ;
term:hasDesignation exp1:cs−ledovka_patagonská−N ;
term:hasReferent dbpedia:Patagonian_toothfish .

exp1:cs−ledovka_patagonská−N
a exp:Designation ;
exp:baseForm ” ledovka patagonská” ;
exp:catCode ”N” ;
exp:langCode ” cs ”

The format includes optional properties that are needed in the GF grammar. To han-
dle relational concepts intelligently, GF requires entries with morphological and syntactic

21

valency information. The following example shows how a GF feature is added to the
TF entry default grammatical features. There are two properties, a TF native feature
syn:frame and a GF native feature gf:lin. A snippet of the result is shown below. Ex-
pert users can code the GF frame formula directly in the gf:lin feature. For non-experts,
the syn:frame feature takes as values the traditional style frame descriptions of type “V
something to something” from which the gf:lin feature value can be generated by rule or
just listed in the GF mapping file.

term1:en−forbid−V_−_sem−Forbid
a term:Term ;
syn:frame ”V someone from being” ;
gf:lin ”ingV2V (mkV st r) noPrep from Prep” ;
term:hasDesignation exp1:en−forbid−V ;

The details of the search and the final conversion to a GF grammar are explained in
the TermFactory User Manual16, Section 6.3. The TermFactory user interface comes with
predefined query aliases, which can be pipelined to harvest terms and convert the results
to GF, and with a TF XHTML editor, which can be used to add grammatical information
to the entries manually.

3.5 Discussion on levels of automation
Verbalizing ontology data can be utilized by GF very successfully, combined with the
following human expertise:

• Ontologies/Semantic data expert - who examines the domain ontologies and suggests
generic SPARQL model(s) for the domain;

• GF expert - who implements a dynamic SPARQL model and the GF answer gener-
ation model.

The two kinds of experts need to cooperate actively, especially for refining the model.
In case we want to verbalize simple facts, the answer generation grammar can be done

semi-automatically, which consists of three major steps: ontology predicates analysis (au-
tomatic), GF pattern assignment (automatic, straightforward for English), and final GF
expert edit. The answer sentences are result from the GF linearization of facts with the
specific grammar.

16http://tfs.ling.helsinki.fi/doc/TFGuide_en.xhtml#s6.3

22

http://tfs.ling.helsinki.fi/doc/TFGuide_en.xhtml#s6.3

4 Comparison and Integration between KRI and TermFac-
tory

In compliance with the reviewers’ recommendations, we compared KRI to TF and proposed
steps for their integration.

4.1 Comparison
KRI is an information retrieval system over a semantic repository. It allows the retrieval
of RDF facts and their representation in natural language, as well as coverage in several
languages.

TermFactory is a higher-level system for management of term ontologies, a type of
storage for storages. TF does not describe real events or relations. It maps terms to
concepts, and focuses on multilinguality and the syntactic and morphological completeness
of the terms.

Both KRI and TF use the Ontotext RDF databases in FactForge17. With KRI, the
user can make queries to the databases in natural language. With TF, the user can make
the databases better suited for the GF grammar and lexicon generation. When these data
collections are ported to a TermFactory site, one can add grammatical properties to the
expressions that do not have such properties yet, as well as convert that representation
format to GF grammars.

The information in FactForge is usually of the following type:

dbpedia:Salmon
rdfs:label ”Salmon@en”
dbp−ont:family dbpedia:Salmonidae
dbp−ont:class dbpedia:Actinopterygii

All properties of the resource dbpedia:Salmon are useful for querying. Once in TF,
the resource is linked to a linguistically rich expression. For many of the common concepts
there are already existing terms and expressions in some of the TermFactory repositories.
Therefore it is enough to add a predicate that links dbpedia:Salmon to exp1:en-salmon-N
or for another language, such as exp1:sv-lax-N for the Swedish expression for salmon.
The latter resource looks like the following:

exp1:en−salmon−N
a exp:Designation ;
exp:baseForm ”salmon” ;
exp:catCode ”N” ;
exp:langCode ”en” .

As a result, the concept dbpedia:Salmon will also be linked to the following concept
in TF top ontology.

17http://www.ontotext.com/factforge, http://factforge.net/

23

http://www.ontotext.com/factforge
http://factforge.net/

term1:en−salmon−N_−_dbp−Salmon
a term:Term ;
term:hasDesignation exp1:en−salmon−N ;
term:hasReferent dbpedia:Salmon .

4.2 Integration
Prerequisites:

1. Ontotext has a TF site. We name it OntoTF.

2. Ontotext has a large semantic repository, such as FactForge. We name it OntoFF.

Procedure:

1. OntoTF connects to a mirror instance of OntoFF, we name it OntoTF FF, where
editting is allowed.

2. The new semantic data (from OntoTF) is aligned with the current one (in OntoFF).
Linkage is provided through the owl:sameAs predicate between, for example dbpedia:Salmon
and exp1:en-salmon-N. exp1:en-salmon-N has a lot of additional properties in con-
trast to dbpedia:Salmon.

3. Querying OntoTF FF returns TF enriched results. Also, it can be used for gram-
matically rich lexicon extrction for GF grammars.

For example, if our query against OntoFF returns results such as dbpedia:Dog, the
same query against OntoTF FF will return the equivalent term1:en-dog-N - dbp-dog and
texttexp1:en-dog-N (details are listed below).

term1:en−dog−N_−_dbp−Dog
a term:Term ;
rdfs:comment ”an English term for the property ont0:Dog”ˆˆxsd:string ;
term:hasDesignation exp1:en−dog−N ;
term:hasReferent dbp:Dog .

exp1:en−dog−N
a exp:Designation ;
rdfs:comment ”an English noun”@en ;
exp:baseForm ”dog” ;

The example below shows a generated GF lexicon:

−−This is a GF file produced automatically from a TermFactory lexicon .
−−# −path=.: . . / prelude: . . / abstract: . . / common
instance LexAnimalsEng of LexAnimals = CatEng ∗∗ open ParadigmsEng , SyntaxEng in {
flags coding=utf8 ;

oper
dbp−Dog_N = mkN ”dog” ;

24

dbp−Cat_N = mkN ” cat ” ;
dbp−Horse_N = mkN ” horse ” ;
. . .

}

25

5 MOLTO Prototypes
The main prototype of MOLTO project is the KRI prototype, developed by Ontotext
and UGOT, which serves as a ”core technology” for the other two prototypes - MOLTO
Patents (Section 5.2) and MOLTO Cultural Heritage (Section 5.3). The KRI prototype is
presented in [MI10], [Dam11], [CEDR12] and in Section 5.1 of the present document.

The technologies used in all prototypes are:

• OWLIM 5 ([BKO+11]) - Ontotext’s semantic repository

• Grammatical Framework for query language definition, NL query parsing, and/or
NL answers generating

• Forest 1.4. as a UI for information retrieval and browsing over semantic repository.
(Forest is an internal software product of Ontotext, based on the Spring Framework18)

In the following sections we provide details on each particular prototype and how they
compare to the final version with focus on grammar-ontology interoperability.

5.1 MOLTO KRI
The MOLTO KRI prototype is built as part of WP4 and is publicly accessible at http:
//molto.ontotext.com.

5.1.1 Prototype description

This prototype is based on PROTON, which is a light-weight upper-level ontology that
defines types such as Person, Location, Organization and Job Title. It provides both
queries and answers in natural languages using GF (examples on Figures 8 and 9). The
NL query to SPARQL translation is done via the mapping rules module (Section 2.1). The
RDF statement to NL answer translation follows the approach of verbalizing predicates
with semi-automatically generated grammars (Section 3.2).

5.1.2 Grammar-ontology interoperability

The query grammar was designed by Ontotext and created by experts from UGOT, in
6 different languages. The grammars can be found at svn://molto-project.eu/wp4/
projects/molto-kri/natural-language-queries/resources/grammars/. The NL queries
are parsed to GF abstract representation, which is mapped to SPARQL queries via map-
ping rules (Section 3.2).

The SPARQL queries are “construct” queries, which return RDF graph that consists of
“subject-predicate-objects” triples. Our task is to verbalize these triples, the focus being on
predicates. To achieve this, we use a separate module of the answer grammar. Originally,

18http://www.springsource.org/spring-framework

26

http://molto.ontotext.com
http://molto.ontotext.com
svn://molto-project.eu/wp4/projects/molto-kri/natural-language-queries/resources/grammars/
svn://molto-project.eu/wp4/projects/molto-kri/natural-language-queries/resources/grammars/
http://www.springsource.org/spring-framework

Figure 8: MOLTO KRI queries

it was semi-automatically generated, and only in English. In the final year of MOLTO it
was refactored and other answer languages were added by the UGOT experts.

The whole answer grammar has two main parts - data and expressions (based on RDF
predicates). The data grammar is automatically generated from the ontology. It contains
over 135000 entities from specific classes, selected for the purpose of the prototype. They
are extracted from the ontology and placed in the GF general Entity category. Each sub-
ject/object is described by the meaningful part of their URI (the one without the domain)
and the English RDF label from the ontology. The resulting abstract GF representation
is demonstrated in Section 3.2.1. The GF grammars for verbalization of predicates are
semi-automatically generated and manually translated to the different languages.

27

Figure 9: MOLTO KRI results

28

5.2 MOLTO Patents
MOLTO Patents is built as part of WP7 and uses MOLTO KRI as a basis. The public
prototype can be found at http://molto-patents.ontotext.com.

5.2.1 Prototype description

This prototype allows querying in three natural languages (English, French and German)
against documents-and-RDF-facts retrieval system. The system contains collections of
biomedical patents from the EPO19 corpus, that are semantically annotated using the
domain ontologies e.g. an internally developed FDA20 data ontology, which is aligned with
other applicable ones(details are given in [MGE+13]). The query grammar is significantly
improved for the current version of the prototype. It has been rewritten by GF experts from
UGOT. The current query langauge allows asking over 20 million semantically different
queries, each with several natural language versions. (This large number comes mostly
from the “show patents that mention X and Y”, where X and Y are among several lexicon
lists - drugs, active ingredients, etc.)

In this use case we do not provide NL answers. Instead, we retrieve ontology data and
biomedical patent documents, translated with statistical machine translation techniques
by UPC.

5.2.2 Grammar-ontology interoperability

Here, in MOLTO patents, for the first time we applied the GF generating SPARQL ap-
proach, defined in Section 2.2.2. We explored its advantages over the mapping rules, which
are now permanently substituted. It is interesting to point out that the query language is
based strictly on ontology relations (e.g. “what are the active ingredients of BACLOFEN”)
and also on semantic annotations over the documents (e.g. “patents that mention PENI-
CILLIN and AMPICILLIN”), where the results are documents that contain annotations
of both drugs. In general, the query language is based on ontology relations and data,
and on semantic data that we add through our GATE21 annotation pipeline. Annotations
were transmitted from English to French and German during the translation process. This
process allowed to extract the lexicons from the annotations in these target languages, to
complete the query language.

19European Patents Office
20Food and Drug Administration Agency, USA
21http://gate.ac.uk/

29

http://molto-patents.ontotext.com
http://gate.ac.uk/

Figure 10: MOLTO patents queries

Figure 11: MOLTO patents results

30

5.3 MOLTO Cultural Heritage
MOLTO Cultural Heritage is built as part of WP8 and also uses MOLTO KRI as a basis.
The public prototype is located at http://museum.ontotext.com.

5.3.1 Prototype description

The specific part of the prototype is an aligned model of ontologies in the cultural heritage
domain, which provides data for the retrieval system. The system generates natural lan-
guage descriptions of museum paintings objects. This prototype provides NL queries on
the topic of “museum paintings” in 15 languages.

The user interface is shown on Figure 12.

Figure 12: MOLTO cultural heritage queries

The corresponding result (truncated version) is displayed on Figure 13.

5.3.2 Grammar-ontology interoperability

The query language is designed to cooperate with the painting.owl ontology, which is
mapped to other painting data, such as DBpedia, GIM, GCM, and CIDOC-CRM as link-
ing ontology. In this use case the focus is on the generation of paintings descriptions.
Automatically generated grammar is not applicable. Data dictionaries for the grammars
are partially provided from the ontology data in the available languages. We use “se-
lect” queries to retrieve specific paintings details and pass them to a GF function, which

31

http://museum.ontotext.com

Figure 13: MOLTO cultural heritage results - paintings descriptions, English

Figure 14: MOLTO cultural heritage results - paintings descriptions, Swedish

generates paintings descriptions (Section 3.3.2). For the GF grammars-to-SPARQL trans-
formation, we directly use the new approach described in Section 2.2.

32

6 Porting KRI to New Applications
In this section, we present the steps for adapting KRI to new domains. Some of the steps
are optional, depending on the task and the initial resources for it.

1. Examine the domain. Align semantic data and ontologies, if needed.

2. Suggest applicable query language and create query grammars (either manually or
extract them from the ontology).

3. Define “variable” types - for GF data grammars and for the data lexicons for the
FSA auto-complete. Extract the corresponding lexicons.

4. Create exemplary SPARQL queries for the GF model. A SPARQL expert is required.

5. Create dynamical model for the domain specific SPARQL generation. A SPARQL
expert is required.

6. Create/correct manually the GF grammars for query and/or answer. This process
may require a few iterations and co-ordination between the experts.

7. Translate/update the query grammars in other natural languges.

8. Generate auto-complete resources from the produced grammars.

9. Add the grammars to the prototype and suggest example queries for the UI.

10. Test the resulting system. If not satisfied, return to step 6.

The process of refining the GF SPARQL grammar usually includes a few iterations,
while we change the NL queries and the expected result.

6.1 Strengths and limitations of our natural language interface
to the semantic repository

A grammar-based interface from NL queries to ontologies allows the maximum accuracy
of the results returned to the user. The NL query is translated into SPARQL without
ambiguities, which ensures the correctness of the triples. In fact, as far as it concerns
evaluation measures, a system of this kind can claim to have 100% precision and recall as
there is no variance in the NL-to-SPARQL direction. Here it is important to note, that
this result can be decreased if there are errors in the data, or, for example, in the semantic
annotation pipeline, when queries are mostly against the annotations(as in the Patents use
case). However, in order to achieve maximum accuracy, the MOLTO interface requires
involvement of experts, which might be a limitation.

Usually a predefined list of NL queries needs to be created by experts in the specific
domain of the application. They should reflect the information most frequently searched

33

by users. Next, a GF expert needs to implement(or correct) the query grammar that can
generate all predefined queries. The grammar has an abstract core and several concrete
grammars, if multiple language support is required by the application. A special concrete
grammar must be designed to offer immediate translation to SPARQL queries, which is
key for the grammar-ontology interoperability. Finally, a GF answer grammar needs to be
implemented in order to process the triples that result from running the SPARQL query
to returning the NL answers. We suggest partially automated ways of verbalizing RDF
triples (see Section 3.2), which can facilitate the automatization of the answer grammar,
but cannot substitute the GF expert participation.

34

7 Conclusion
Throughout MOLTO we have explored a few different directions of grammar-ontology in-
teroperability. Our experience has shown that Grammatical Framework is suitable for
creation of grammars that define a query language, including corresponding machine lan-
guage, that to be used for query execution against the retrieval system. Verbalization of
response is easily supported as well. It can be focused on only the simple facts verbaliza-
tion, or it could be used for parametrized descriptions, which we both demonstrarted in the
related work packages. The degree of automation of the whole interoperability cycle can
be very high, but this requires high expertise from GF point of view, good understanding
of the domain, and good planning of the verbalization model.

35

8 References

References
[AGL13] Alessio Palmero Aprosio, Claudio Giuliano, and Alberto Lavelli. Automatic Ex-

pansion of DBpedia Exploiting Wikipedia Cross-Language Information. Mont-
pellier, France, May 2013. ESWC.

[BKO+11] Barry Bishop, Atanas Kiryakov, Damyan Ognyanoff, Ivan Peikov, Zdravko
Tashev, and Ruslan Velkov. OWLIM: A family of scalable semantic repositories.
Semantic Web Journal, 2:33–42, June 2011.

[Cam12] John Camilleri. Gf eclipse plugin, 2012.

[Car13] Lauri Carlson. TermFactory User Guide, 2007–2013.

[CEDR12] Milen Chechev, Ramona Enache, Mariana Damova, and Aarne Ranta. D4.3
Grammar-Ontology Interoperability, May 2012. Deliverable 4.3. MOLTO FP7-
ICT-247914.

[Con11] MOLTO Consortium. Molto enlarged eu annex i - description of work, 2011.

[Dam11] Mariana Damova. D4.2 Data Models and Alignment, May 2011. Deliverable
4.2. MOLTO FP7-ICT-247914.

[DDE+13] Mariana Damova, Dana Dannells, Ramona Enache, Maria Mateva, and Aarne
Ranta. Natural language interaction with semantic web knowledge bases and
lod. In Paul Buitelaar and Philip Cimiano, editors, Towards the Multilingual
Semantic Web. Springer, Heidelberg, Germany, 2013.

[DRE+13] Dana Dannells, Aarne Ranta, Ramona Enache, Mariana Damova, and Maria
Mateva. D8.3 Translation and retrieval system for museum object descriptions,
2013. Deliverable 8.3. MOLTO FP7-ICT-247914.

[Ena10] Ramona Enache. Reasoning and language generation in the sumo ontology.
Master’s thesis, Chalmers University of Technology, 2010.

[Lis12] Inari Listenmaa. Ontology-based lexicon management in a multilingual trans-
lation system – a survey of use cases. Master’s thesis, University of Helsinki,
November 2012.

[MGE+13] Maria Mateva, Meritxell Gonzàlez, Ramona Enache, Cristina España-Bonet,
Llúıs Màrquez, Borislav Popov, and Aarne Ranta. D7.3 Patent MT and Re-
trieval. Final Report., April 2013. Deliverable 7.3. MOLTO FP7-ICT-247914.

[MI10] Peter Mitankin and Atanas Ilchev. D4.1 Knowledge Representation Infrastruc-
ture, November 2010. Deliverable 4.1. MOLTO FP7-ICT-247914.

36

[MRM13] Peter Mitankin, Aarne Ranta, and Maria Mateva. Wkb answer grammar. Wkb
Grammar, 2013.

[MS06] Chris Mellish and Xiantang Sun. The semantic web as a linguistic resource:
opportunities for natural language generation. knowledge based systems. In
Presented at the Twenty-sixth SGAI International Conference on Innovative
Techniques and Applications of Artificial Intelligence, 2006.

[Ran12] A. Ranta. Implementing Programming Languages. An Introduction to Compil-
ers and Interpreters, with an appendix coauthored by Markus Forsberg. College
Publications, London, 2012.

37

9 Appendix A: Groups of RDF predicate types

Type Name Pattern Examples # of
pred.

TYPE A0 GENERAL A Group type - 11

TYPE A1 E1 has X E2. has president, 533
has profession

TYPE A2 E1 has X X E2. has subsequent work 643
has general manager

TYPE A3 E1 has X Prep E2. has route of administration 53
has distance to london

TYPE A4 E1 has X X X E2. has free flight time 179
has first driver team

TYPE A5 E1 has X Prep X X E2. has distance to charing cross 17
has number of doctoral students

TYPE A6 E1 has X X Prep X E2. has end year of insertion 8
has ethnic groups in year

TYPE A7 E1 has X X X X E2. has port 1 docking date 30
has original maximum boat beam

TYPE A8 E1 has X Prep X X X E2. has rank in final medal count 6
has percentage of area water round

TYPE A9 E1 has X X Prep X X E2. has qmf language of short tmpl 18
has qmf strsqlval of short tmpl

TYPE A10 E1 has X X X Prep X E2. has qmf is subformat of long 1

TYPE A11 E1 has X X X X X E2. has national topographic 8
system map number

TYPE B0 GENERAL B Group type - 8

TYPE B1 E1 is X Prep E2. is similar to 87
is complement of

TYPE B2 E1 is X X Prep E2. is doing business as 27
is child organization of

TYPE B3 E1 is Prep E2. is from 4
is within

TYPE C0 GENERAL C Group type - 6

TYPE C1 E1 Verb E2. contains 59
permits

TYPE C3 E1 Verb Prep E2. conforms to 11
refers to

TYPE C4 E1 Verb Prep X E2. wins at asia 13
wins at challenges

TYPE C5 E1 Verb X Prep E2. was intended for 2
shows features of

Table 2: RDF predicates types classification with respect ot GF patterns

38

	Introduction
	From GF Grammars to SPARQL
	Mapping rules and an FSA auto-complete module
	The mapping rules approach
	Data lexicons
	Auto-complete with FSA and GF
	Advantages and disadvantages

	GF as means to generate SPARQL queries - YAQL
	YAQL
	SPARQL generation model - Patents use case
	SPARQL generation model - Cultural Heritage use case

	Creation of a query language
	Discussion on levels of automation

	GF Grammars Generation from Ontology
	The GQHB Tool and the Grammar-Ontology Helper for the GF Eclipse Plugin
	Generation of GF grammars from RDF triples
	Subjects and objects representation
	Predicates representation and predicates types
	Software implementation

	NL description generation from semantic results. Cultural Heritage use case
	NL answer generation from semantic results
	Object description. Cultural Heritage use case

	Lexicon generation with TermFactory
	Discussion on levels of automation

	Comparison and Integration between KRI and TermFactory
	Comparison
	Integration

	MOLTO Prototypes
	MOLTO KRI
	Prototype description
	Grammar-ontology interoperability

	MOLTO Patents
	Prototype description
	Grammar-ontology interoperability

	MOLTO Cultural Heritage
	Prototype description
	Grammar-ontology interoperability

	Porting KRI to New Applications
	Strengths and limitations of our natural language interface to the semantic repository

	Conclusion
	References
	Appendix A: Groups of RDF predicate types

