

MOLTO – Multilingual Online Translation

D4.3 Grammar-Ontology

Interoperability
http://www.molto-project.eu

Contract No.: FP7-ICT-247914

Project full title: MOLTO - Multilingual Online Translation

Deliverable: D4.3 Grammar-Ontology Interoperability

Security (distribution level): Public

Contractual date of delivery: 30.09.2010

Actual date of delivery: 30.09.2010

Type: Prototype

Status & version: Final

Author(s): Milen Chechev

Task responsible: ONTO (WP4)

Other contributors:

ABSTRACT

This document describes the MOLTO D4.3 prototype hosted on

http://molto.ontotext.com. It gives more details about the

different modules that the prototype contains and

provides instructions about the exploitation of the

prototype.

http://www.molto-project.eu/node/828

Contents

1 Introduction .. 3

2 The Architecture ... 3

3 Auto complete tools .. 4

4 Mapping rules .. 5

5 Results to Natural Language .. 5

6 Prototype .. 5

7 Extending THE SCOPE ... 8

8 Conclusions ... 9

9 Future work .. 9

10 References .. 9

11 Appendix A - Mapping rules syntax ... 10

Table of Figures

Figure 1. Question answering circle... 4
Figure 2.Main page of the prototype ... 6
Figure 3. The auto complete example. ... 7
Figure 4.Example for results from search ... 8

MOLTO – Multilingual Online Translation

1 Introduction

In everyday life we often look for answers of different questions and the most natural human way of
representing the question is by using our natural language. The main problems when a program tries
to retrieve answers of this kind of questions are:

(a) difficulties with understanding the natural language question,

(b) difficulties with processing more than one natural language,

(c) difficulties with translating the result of the language of the user.

The knowledge representation infrastructure described at Deliverable 4.1 (1) and data models

described at Deliverable 4.2 (2) are both used to build a prototype that faces the above problems. The
prototype can process natural language questions in different languages, search for data in a
semantic repository and present the retrieved data in the requested language. All this is possible
because of the use of GF framework1 and the interoperability between the GF grammar and the
ontologies.

The prototype can work with natural language queries but also has some restrictions. The main
restriction that is made is the use of controlled language. The controlled language is natural language
with restricted grammar and vocabulary. This restriction is made to eliminate ambiguity and
complexity of the language. Once the ambiguity is eliminated we use GF as framework for
processing the language. This is made with the creation of GF abstract grammar that covers all
needed sentences and GF concrete grammars for each language that we want to cover.

When the controlled language is used, the main difficulty for the user is to write query that is part of

the language. The auto complete is a natural feature that informs the user what are the possible next
words in the process of query creation. If there aren't any suggestions for auto complete the word or
the phrase this will be a sign that the sentence is out of the controlled language.

2 The Architecture

The interoperability between NL and ontologies will provide the human with natural interface for
querying and retrieval of the semantic data. The main novelty of our approach is that the user can
make queries on all languages that are covered by the GF. The query is transformed to GF Abstract
Representation that is independent from the language then the abstract representation is converted to
SPARQL query which is executed on the semantic repository. Consequently, the obtained results
from the semantic search are transformed to the GF abstract representation from which the answer

in natural language is produced.

1
 http://gramaticalframework.org

MOLTO – Multilingual Online Translation

Figure 1. Question answering circle

The system is build with interaction between several modules:

 fsa module - module that is used for auto complete function. It builds fsa from the possible
strings that to be used for the auto complete function.

 lexicons - module that preprocesses lexicons for the named entities at the queries.(Currently
there are lexicons for people, organizations and locations.

 mapping rules module - module that is used for mapping between GF abstract representation
and SPARQL

 natural-language-queries - module that uses the modules described above to process the

natural language query to SPARQL

 natural-language-answers - module that process the results from the SPARQL query and

return results in the natural language.

 molto-web - the web UI for the project

3 Auto complete tools

The modules that realize the autocomplete function are the fsa module and lexicon module.

The fsa module builds minimal acyclic final state automata from the given sentences to preprocess
them and to be able to provide real time autocomplete for a big set of sentences. For more
implementation details about this please see the document "MOLTO - description of java projects,
algorithms and feature"2.

2
 svn://molto-project.eu/wp4/docs/molto-core-tools-description.pdf

MOLTO – Multilingual Online Translation

The lexicon module manages lexicons for the different named entities. The current lexicons that are

used are for people, locations and organizations.

4 Mapping rules

The mapping-rules tool provide semi-automatic transformation from GF Abstract Representation to
SPARQL. The transformation is realized with use of rules written in the language of the tool. You
can find more details and examples about the syntax in APPENDIX A.

The mapping rules tool have dual use:

 preprocess - the rules are compiled and serialized as binary file that can be quickly loaded
and used after that.

 real-time transformation - the tool is used from the natural-language-queries module for real-
time transformation from GF Abstract representation of the query to SPARQL query.

5 Results to Natural Language

The module for transformation of the GF results to natural language is named natural-language-
answers. The module provides:

 functionality for transforming a list of ontology files in nl format to a GF abstract and
concrete grammar.

 real-time transformation of list of triples to natural language using the GF abstract and the
concrete grammar built in the previous step.

6 Prototype

This section describe the system prototype3 that is built as part of D4.3. It is an information retrieval
system that retrieves semantic data from the semantic repository. The data that is loaded in the
repository is in the world knowledge base domain and include information about people,
organizations, locations and job positions.

3
 http://molto.ontotext.com

MOLTO – Multilingual Online Translation

Figure 2. Main page of the prototype

The main page offers the possibility of natural language search with the use of the controlled
language of the system. You can see the user interface on figure 2. At the right upper corner there is

a drop down menu that can be used for change of the language of the interface and the query. There
are 6 language that are already imported in the prototype. They are:

 English

 German

 French

 Finnish

 Swedish

 Italian

The autocomplete function is available on all of the above written languages. An example of the
auto complete can be seen on Figure 3.

MOLTO – Multilingual Online Translation

Figure 3. The auto complete example.

After the user creates his query he can execute it against the OWLIM4 semantic repository. The
returned results can be seen on the figure 4. The results are presented as several sentences in natural
language and a table with semantic results returned from the semantic repository. Currently only

English is covered as a language for the returned results.

At the page there are the query in natural language and a link to the SPARQL representation of the
query. The current representation of the natural language query "Give me all about New York" is:

construct WHERE {

?location <http://www.w3.org/2000/01/rdf-schema#label> "New York" .

?location <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://proton.semanticweb.org/protontop#Location> .

?location ?p ?o.

}

4
 http://www.ontotext.com/owlim

MOLTO – Multilingual Online Translation

Figure 4. Example for results from search

7 Extending THE SCOPE

The prototype can be extended with:

 adding more databases

 extending the queries

 extending the answers

 add more languages.

If we want to add more data to the semantic repository we have to use one of the interfaces for the
OWLIM semantic repository (for example the sessame openrdf tools). Once added the data will be
available for search and if the scope of the data is the same as the already implemented queries it will
be retrieved as result.

If we want to extend the scope of the queries, the GF grammars have to be changed to cover the new
sentences after that the mapping rules to SPARQL have to be provided.

Currently, the GF grammar that is used for answers is automatically built from the ontology. It's not
perfect but it can be manually manipulated to give better explanations. Another situation in which
we may need to manipulate the GF grammar for the results representation is when the new
databases are added or if we need to cover a new language.

If we want to add a new language for natural language queries in the prototype, we need a concrete
GF grammar for it. It can be built using some of the already existing grammars as example and
applying small modifications to them. After that we need to preprocess the sentences of the new
language with the fsa module and to add it to the web interface.

MOLTO – Multilingual Online Translation

8 Conclusions

We presented in this document the prototype of using interoperability between the natural language
grammars and ontologies. The main advantages of this is the possibility to ask the semantic
repository using natural language queries and to present the retrieved results again in natural
language. This considerably improves the accessibility of the system from the users that are not
experts in semantic web technologies and give a better chance of spreading of the usage of the
semantic repositories.

9 Future work

The described prototype will be used as a basis for the D7.1 and D8.1 prototypes that are from the
patents and cultural heritage domains.

10 References

1. Mitankin, P. and Ilchev, A. D4.1 Knowledge Representation Infrastructure.MOLTO deliverable 4.1.

November 2010.

2. Damova, M. D4.2. Data Models and alignment. MOLTO Deliverable 4.2. May 2011.

MOLTO – Multilingual Online Translation

11 Appendix A - Mapping rules syntax

There are several constructions in the mapping language:

#define nameOfDefine() { SELECT }

This construction defines the use of nameOfDefine(). All occurrences of nameOfDefine below this
"define" construction will be replaced with the text "SELECT". This use of define is as in the c/c++
languages.

#define nameOfDefine() { SELECT ## " " ##DISTINCT }

This defines that all occurances of nameOFDefine() will be changed with "SELECT DISTINCT".
The symbol ## is used to concatenate strings (this symbol will be used also in the rules below with
the same meaning).

#table nameOfTable[2] {

 Person <http://proton.semanticweb.org/protontop#Person>;

 Location <http://proton.semanticweb.org/protontop#Location>;

 Organization <http://proton.semanticweb.org/protontop#Organization>;

}

This construction defines a mapping table with the name nameOfTable. This table can be used in the

rules for easy and flexible writing of different constants as URIs, names and etc.

//comment

This is the construction for comment

(QSet ?X) | single(X) && type(X) == "" --> construct WHERE { sparqlVar(name(X)) rdftype()
class(name(X)) . sparqlVar(name(X)) rdfslabel() sparqlVar(name(X)) ## "_label".
sparqlVar(name(X)) ?p ?o};

The above construction is the mapping rule. It contains 3 main parts. First part is used as regex that
tries to match a GF Abstract Representation. The end of the first part and the beginning of the
second part is marked with the symbol |. The second part is used as boolean condition for execution
of the rule. In the example above ?X is marked with the rest of the Abstract Representation after the
QSet word. The function single is used to determine if the X is a tree or a single term. The function
type can return blank string or Person, Organization, Location, JobTitle.

The third part of the rule determines the SPARQL query that matches the selected GF Abstract
Representation. In the example sparqlVar is a table that has to be defined in the begining of the file
and to map the name of the variable X to a sparql variable. rdfslabel() is defined in the begining of
the file too. In this example the string ## is also used. It concatenates the name of the sparql variable
with "_label". This is very useful for dynamic creation of the variable names .

