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ABSTRACT
This is the final report of Workpackage 5: Statistical and Robust MT. The document
includes the work done during the period lasting since M24, when D5.2 was submitted.
Contributions correspond on the one hand to the improvement of the previous hybrid
MT systems, its portage to German, and the development of new hybrid systems. On the
other hand, the generation of general lexical resources and robust parsing are introduced
for the first time. Previous work reported in D5.1 Description of the final collection of
corporaa and D5.2 Description and evaluation of the combination prototypesb has been
summarised here in order to make the document self-contained.

ahttp://www.molto-project.eu/biblio/description-final-collection-corpora
bhttp://www.molto-project.eu/biblio/deliverable/description-and-evaluation-combination-prototypes





Contents

1 Introduction 4

2 Patents Translation 4

2.1 Patent documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 MAREC corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 EPO facilitated corpus . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Linguistic processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Statistical Machine Translation System 11

3.1 Translation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Automatic evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Patent SMT performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Grammatical Framework System 18

4.1 French Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 General architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1.3 Domain-specific lexicon . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 German Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.2 Domain-specific lexicon . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 System definition and patent GF performance . . . . . . . . . . . . . . . . 25

4.4 Further improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 General Lexical Resources 32

5.1 Uni-Sense Lexicons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Multi-Sense Lexicons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Robust Statistical Parsing 37

6.1 Robust parsing performance . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.1.1 Round 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1.2 Round 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Hybrid Systems 45

7.1 Integration led by SMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 Integration led by GF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Synergies and Relations 55

9 Summary 57

2



References 59

A Automatic Evaluation of the Hybrid Systems 63
A.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.2 English-to-French translation . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.3 English-to-German translation . . . . . . . . . . . . . . . . . . . . . . . . . 63

B One-click System 73
B.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3



1 Introduction

This is the final report of Workpackage 5: Statistical and Robust MT. The goal of the
workpackage has been to develop translation methods that complete the grammar-based
ones to extend their coverage and quality in unconstrained text translation. This does not
only concern the translation engines but also individual components and resources that
are relevant in a translation engine.

From the work done within this framework, we highlight the generation of lexical re-
sources from WordNet [13], Apertium dictionaries [14], and SMT translation tables; the
development of a statistical robust parser; and hybrid systems for patents that combine
an in-domain GF grammar with an SMT translator. The first two points allow to extend
the coverage of GF and are useful for a general translation or a translation in any domain.
The third one, on the contrary, starts from the translation on a concrete domain and tries
to extend the coverage outside the coverage of the grammar.

The work introduced here corresponds to the development of the components. It is not
a stand-alone work but it needs of other workpackages in order to be integrated within
MOLTO. As input for the patents related work, we use data coming from the use case,
WP7, where also the engines are finally used. As outcome of the workpackage, we also
provide WP3 with new translators to integrate and the work done is being disseminated
within WP10. The relation with WP9 is bidirectional during the whole project since a
continuous evaluation is necessary to develop the engines.

The deliverable is organised as follows. After this introduction, Section 2 is devoted to
show the distinctive features of patents as one of the main domains of application of the
technology. The data and the necessary pre-process are also reported. Section 3 describes
the statistical translation and evaluates automatically its performance. The same is done in
Section 4 for the GF translation system for patents. The general architecture is described
as well as the particularities of the French and German grammars. Next, in Section 5,
a general methodology for extracting lexicons from existing resources is explained. The
robust statistical parser is reported in Section 6 and the construction of the hybrid engines
for patents in Section 7. Finally, Section 8 relates this work to others inside and outside
MOLTO and Section 9 summarises the work. We also include two appendixes. Appendix A
includes the automatic evaluation of the hybrid systems of Section 7. The number of
variants of the systems is too high and the complete evaluation within the main text would
damage the readability of the document. Appendix B is a short manual for using the
hybrid system developed for patent translation.

2 Patents Translation

Patents have been chosen for the opening of the system to non-restricted language. This
election has two main reasons. First, the language of patents, although having a larger
amount of vocabulary and richness of grammatical structure than the mathematical exer-
cises and the description of museum objects, still uses a formal style that can be interpreted
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by a grammar. And second, there is nowadays a growing interest for patents translation.
The high and increasing number of registered patents has created a huge multilingual
database of patents distributed all over the world. So, there is an actual need for building
systems able to access, search and translate patents, in order to make these data available
to a large community. Hence, the translation of patents text seems a natural scenario to
test the techniques developed in this workpackage.

2.1 Patent documents

A patent is an official document granting a right. The file or files associated to every patent
contain not only the terms of the patent itself, but also bibliographic data (i.e. publication,
authorship and classification). Being an official document, the structure giving the terms
of the patent is quite fixed. The documents are normalised to an XML format, in which
the standardised fields include dates, countries, languages, references, person names, and
companies as well as rich subject classifications. Every patent has a title, a description, an
abstract with a short and general summary and a series of claims.

The technical data is a relevant section of the document. It contains the list of IPC1

codes assigned to the patent, i.e. the classification of the patent according to the different
areas of technology to which the patent pertain. The IPC is arranged in a hierarchical
structure of 8 sections divided into 120 classes, 600 subclasses and 70,000 groups. Here we
show the first level of the classification:

A – Human Necessities

B – Performing Operations,
Transporting

C – Chemistry, Metallurgy

D – Textiles, Paper

E – Fixed Constructions

F – Mechanical Engineering, Lighting,
Heating, Weapons, Blasting

G – Physics

H – Electricity

The textual elements of a patent are the abstract, the description and the claims.
Despite most of the patent documents contain abstracts, usually they do not provide
descriptions2. Each of the three sections has a different purpose: the abstract gives the
most relevant information of the invention, the description gives background information for
understanding the invention and the series of claims constitute the legal scope of protection
of the patent.

A claim is a single (possibly very long) sentence composed mainly of two parts: an
introductory phrase and the body of the claim. As it has been said, it is in the body of
the claim where there is the specific legal description of the exact invention. Therefore,

1International Patent Classification, http://www.wipo.int/classifications/ipc/en/
2Data source: http://www.ir-facility.org/prototypes/marec/statistics
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Figure 1: An extract of the description and claims sections of a patent document.

claims are written in a lawyerish style and use a very specific vocabulary of the domain of
the patent.

An excerpt of a patent description and the text of the patent claim can be seen in
Figure 1. At the top of the figure there is a fragment of the description written in English.
Next, the series of claims in the available languages are listed. Each claim consists of a
sequence of texts which may contain figures, formulae or, as in this case, chemistry items.

The results of this workpackage will be tested by translating abstracts and claims of
patents of a given IPC code. In particular, we restrict our testing domain to IPC A61P
which corresponds to:

A – Human Necessities

– A61 Medical or veterinary science; hygiene

– A61P Specific therapeutic activity of chemical compounds or medical prepara-
tions

Besides the generalities of patents, this domain uses specific vocabulary of chemistry
plenty of names of compounds, which have a particular structure that cannot be properly
analysed with standard NLP tools. Therefore, as a collateral effect of the domain, some
basic linguistic processors have been built and are summarised in Section 2.3 and further
explained in Deliverable 5.2 [12]. Before this, the corpora of patents used are introduced
in the following section.
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2.2 Corpora

As an European project that aims to translate among the European languages, MOLTO
works with European patents. The European Patent Office3 (EPO) is then a natural
provider for the data. The agency registers all the patent entries at least in their three of-
ficial languages (European Patent Convention, Art.14) and therefore, our task is restricted
to these three languages: English, French and German.

Despite the original language in which a patent is written, the specifications of the Eu-
ropean patents are published in one of the official languages, and shall include a translation
of the claims in the other two official languages. In consequence, the EPO is creating three
parallel corpora of claims in the three official languages and several bilingual corpora made
up of descriptions in the European languages [42].

At the beginning of the project EPO data was not used though. Matrixware started
as a partner of the project, so the corpora at their disposal (MAREC) was used instead.
Their corpora included not only European patents but also American and Japanese ones.
Due to the nature of the project, only European patents with manual translations in the
languages enumerated were considered.

2.2.1 MAREC corpus

MAREC is a data collection over 19 million of European, US and Japanese patent ap-
plications and granted patents from 1976 to June 2008. In MAREC, the majority of the
documents are written in English, German and French, and about half of the documents
include full text. The documents follow a unified XML format normalised from sources
of the European Patent Office, World Intellectual Property Organisation, United States
Patent and Trademark Office and Japanese Patent Office (only applications). The stan-
dardised fields include dates, countries, languages, references, person names, and companies
as well as rich subject classifications. Some figures and descriptions of this corpus and the
following ones can be found in Deliverable 5.1 [11].

A part of MAREC is made available by the CLEF Initiative (Conference and Labs of
the Evaluation Forum4) to those scientifics who participate in their Information Retrieval
competitions. In particular, we gathered a parallel corpus in the three languages from
the corpus of patents given for the CLEF-IP track in the CLEF 2010 Conference5. These
data are an extract of the MAREC corpus which contain over 2.6 million patent documents
pertaining to 1.3 million patents from the EPO with some content in English, German and
French, and extended by documents from the WIPO6.

The corpus provided for the CLEF-IP tasks contains the bibliographic data, abstract,
description, and claims. However, not all documents have content in all the fields, and in

3http://www.epo.org/
4http://www.clef-initiative.eu/
5http://clef2010.org/
6World Intellectual Property Organization, http://www.wipo.int
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SET Fragments EN tok DE tok FR tok

Training 279,282 7,954,491 7,346,319 8,906,379
Development 993 29,253 26,796 33,825
Test 1,008 31,239 28,225 35,263

Table 1: Statistics for the patents parallel corpus on the biomedical domain in English
(EN), German (DE) and French (FR).

MOLTO one needs those patents with translated abstracts and claims. The text of these
fields is divided into several fragments, which are well marked. This is important since one
needs the text aligned in the several languages to build the parallel corpus.

The complete corpus has 2,680,604 patent documents, 822,144 of which are granted
patents. 510,183 out of these have the claims translated into the three languages. There
are 119,337 documents with IPC code A61P, the one we chose to represent the biomedical
domain. Within this group, 21,150 granted patents have claims in the three languages
which are aligned and are used to build the parallel corpus.

One can see in Figure 1 the structure of claims in the XML document. A claim is, in
general, a long sentence splitted in fragments marked with <claim-text> tags, probably
with nested elements. We search in every patent with trilingual claims, and count the
number of claim-text elements. Whenever its number is the same for the three languages
we assume that the claim is aligned and we add the aligned fragments to the corpus. So, our
minimum aligned unit is shorter than a claim and, consequently, shorter than a sentence.

Even though fragments are shorter than a sentence, they may have a large number of
words. For an appropriate use of the standard SMT software (GIZA++ [32] and Moses [20]),
the final corpus contains only those fragments with less than 100 tokens and with a ratio
between the lengths of the source and target sentence less than 9. This methodology leads
to 281,283 aligned parallel fragments as it can be seen in Table 1.

Besides, each of the fragments is cleaned in order to achieve an homogeneous corpus.
Tags such as <sub> or <br> are removed, chemistry formulae and images with the ap-
propriate tag are substituted by **IMAGE** and extra spaces are removed for example.

The final parallel corpus is splitted in three parts. The largest part corresponds to the
training corpus and has a total of 279,282 fragments and around 8 million tokens depending
on the language (see Table 1). For every language, its side of the parallel corpus is used
as a monolingual corpus to estimate the language model in the translation process. Two
smaller sets have been selected for development and test purposes, keeping 993 fragments
for development and 1008 for test.

2.2.2 EPO facilitated corpus

EPO has provided the project with two different datasets. On the one hand, we have
obtained a parallel corpus composed of 1.7M fragments aligned by language pairs. This
corpus only contains the parallel raw text and the identifier of the patent, loosing all the
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SET DE-EN FR-EN FR-DE

Training 279,282 279,282 279,282
Development 993 993 993

Test MAREC 1,008 1,008 1,008
Test EPOMT 847 858 831

Table 2: Number of aligned fragments used for training and testing the translation systems.

richness of the original XML files, which, on the other hand, is not needed to train a
translation system. However, less than 900 fragments from 66 patents (847 for German-
English, 858 for French-English and 831 for French-German) correspond to the domain we
tackle having IPC code A61P. Therefore, this small dataset, EPOMT, is going to be used
for test purposes (see Table 2 for a comparison between the data sets used).

On the other hand, EPO provided also a website from where we downloaded 7,705
patent documents, also in the biomedical domain, all dated from 2010 to 2012. The patent
documents follow the normalised XML format defined by the EPO and described before and
therefore they are processed in a similar way as in Section 2.2.1. Within this downloaded
corpus, up to 4,274 out of the 7,705 documents have claims, and 2,058 out of them are
trilingual. 2,116 documents have claims written only in English, 66 have claims only in
German, 34 only in French.

These documents are not be used for training the SMT systems. Instead, they are used
to populate the patents retrieval system as explained in Section 8 and translated using the
engines here described. Notice that our training corpus has patents up to 2008 and this
dataset starts from 2010, so there is no overlapping patents and all translations are fair.

2.3 Linguistic processors

The detection and correct tokenisation of chemical compounds has been shown to be crucial
in the performance of translators (see Section 3 for the analysis). A regular tokeniser would
for example split the compound:

cis-4-cyano-4-(3-(cylopentyloxy)-4-methoxyphenyl)cyclohexane-1-carboxylic

into 9 tokens

cis-4-cyano-4-, (, 3-, (, cylopentyloxy, ), -4-methoxyphenyl, ), cyclohexane-1-carboxylic,

when using standard tokenisation rules. Consequently, each of the tokens would be trans-
lated as an independent word. To deal with this peculiarity of the domain, we developed
a pipeline to detect, tokenise and translate compounds. A general scheme can be seen in
Figure 2.

We devise a recogniser and tokeniser based on affix detection. A list with approximately
150 affixes has been compiled (142 elements for English and German, and 148 for French)
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Word

has
affixes?

Not a
compound

is in dic-
tionary?

Possible
compound

no

yes

yes

no

Figure 2: Pipeline to detect candidates to be a chemical compound. Those candidates
should not be tokenised.

and it is used to select the candidate tokens to be a compound from the corpus. The list
includes prefixes such as Meth-, Eth-, Prop-, Pentadec-, imido-, selenocarboxy-, hydroxy-
, Propion-, Arachid-... and suffixes such as -ol, -one, -al, -aldehyde, -oic, -oate, -oxy,
-sulfonic, -nitrile, -amine or -isocyanide.

The candidates selected this way are matched against a dictionary and those with-
out a match are considered to be compounds and do not get an internal tokenisation.
103,272 compounds are found with this procedure within the training corpus defined in
Section 2.2.1.

However, this list of compounds contains some noise. Examples of noise are in this
context proper names with the defined affixes (Hôpital ), words that do not appear in
the dictionary (extracorporeal ) or simply typos (comparoate). The amount of noise is
considerable, but extra words do not in general imply a wrong tokenisation. So, the
method works better as a (non-)tokeniser than as a compound detector and it bets for
high recall instead of precision. Notice also that multiword compounds such as Potassium
bromide cannot be detected with this methodology, but again, there is no negative effect
on tokenisation. This pre-process is applied to the parallel corpus before training the SMT
system.
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3 Statistical Machine Translation System

3.1 Translation System

In Statistical Machine Translation (SMT) and within the log-linear model [31], the best
translation ê for a given source sentence f is the most probable one, and the probability
is expressed as a weighted sum of different elements:

T (f) = ê = argmaxe

∑
m

λmhm(f, e) . (1)

In the standard most simple form, one considers 8 components being hm(f, e) log-
probabilities of: the language model P (e), the generative and discriminative lexical trans-
lation probabilities lex(f |e) and lex(e|f) respectively, the generative and discriminative
translation models P (f |e) and P (e|f), the distortion model Pd(e, f), and the phrase and
word penalties, ph(e) and w(e).

The λ weights, which account for the relative importance of each feature in the log-linear
probabilistic model, are commonly estimated by optimising the translation performance
on a development set. For this optimisation one can use Minimum Error Rate Training
(MERT) [30] where BLEU [33] is the reference score.

In our experiments, we build a state-of-the-art phrase-based SMT system trained on
the biomedical domain with the corpus described in Section 2.2. Its development has
been done using standard freely available software. A 5-gram language model is estimated
using interpolated Kneser-Ney discounting with SRILM [41]. Word alignment is done with
GIZA++ [32] and both phrase extraction and decoding are done with the Moses package [21,
20]. The optimisation of the weights of the model is trained with MERT against the BLEU
evaluation metric. Our model considers the language model, direct and inverse phrase
probabilities, direct and inverse lexical probabilities, phrase and word penalties, and a
non-lexicalised reordering.

As a byproduct of training the SMT system lexical and phrase tables are obtained. The
word-to-word translations are deduced from the alignments given by GIZA++. Also from
these alignments and using the heuristic “grow-diag-final” and the phrase extraction script
in Moses we obtained the final translation tables used for decoding. These resources are
also important to build the patent’s lexicon that uses the GF engine (see Section 4).

3.2 Automatic evaluation

Manual evaluation is the most reliable way to quantify the quality of a translation but it
is also a very costly way (both in time and money). For a fast and objective evaluation
during the system development one needs to make use of automatic metrics. Automatic
metrics are costless, objective and reusable but they cannot capture all the aspects that a
human evaluator takes into account. In order to somehow overcome this limitation we do
not use a single metric such as the standard BLEU but an heterogeneous set.

The Asiya evaluation package [15] includes more than 500 metrics and their variants
at lexical, syntactic and semantic levels. Syntactic and semantic metrics need linguistic
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processors to annotate the translations so, the number of available metrics depends on
the availability of these processors in the language to be applied. Lexical metrics are in
general available to all the languages. In order to be applied to biomedical patents, Asiya
has been modified including new functionalities and adapting the linguistic processors for
English, French and German (see Deliverable 7.3 [26] for further information).

In the following we select a subset of lexical and syntactic metrics to be applied to
English, French and German; and a larger set including semantic metrics to be applied to
the English translations. The sets are build up with:

Lexical metrics

• PER [43], TER [39], WER [29]: Based on edit distances

• BLEU, NIST [9], ROUGE [22]: Based on n-gram matching (lexical precision: BLEU,
NIST; and lexical recall: ROUGE)

• GTM [27], METEOR [5]: Based on the F-measure

• ULC [17]: Uniform Linear Combination. When applied to lexical metrics it includes
WER, PER, TER, BLEU, NIST, ROUGE-S*, GTM-2, METEOR-st.

Syntactic metrics [16]

• SP-Op(*), SP-pNIST-5: Based on the lexical overlap or the NIST score over the
part-of-speech (Shallow Parsing)

• CP-Op(*), CP-Oc(*), CP-STM-9: Based on the lexical overlap among part-of-speech
or constituents of constituent parse trees. Also the Syntactic T ree Matching is
included [24] (Constituent Parsing)

In all cases results are given as the average over all types of the corresponding elements.

Semantic metrics [16]

• SR-Or, SR-Or(*): Based on the lexical overlap between semantic roles, or indepen-
dently of their lexical realization (Semantic Roles)

• DR-Or, DR-Orp, DR-STM-9: Based on lexical overlap or morphosyntactic overlap
between discourse representations structures (i.e., between parts-of-speech associated
to lexical items) or STM metric over these elements (Discourse Representations)

As before, results are given as the average over all types of the corresponding elements.
The uniform linear combination of metrics used in the evaluation at the three linguistic

levels considers the metrics in the lexical ULC described above and all the syntactic and
semantic here introduced.
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DE2EN FR2EN

METRIC Bing Google MOLTOSMT Bing Google MOLTOSMT

WER 47.07 29.04 26.34 46.90 27.30 21.51
PER 30.32 16.96 16.74 29.37 15.97 12.34
TER 43.03 27.02 24.35 42.88 25.09 19.58
BLEU 44.05 65.79 65.41 43.70 67.97 70.45
NIST 8.04 10.46 10.12 8.28 10.65 10.86
GTM-2 31.74 48.38 47.94 31.45 50.54 54.12
MTR-st 35.92 46.73 45.97 38.01 48.29 49.63
RG-S* 54.39 74.75 71.61 58.53 76.61 77.82

CP-Oc(*) 50.60 58.32 57.59 39.91 58.93 63.66
CP-Op(*) 57.31 64.07 64.89 49.16 62.85 67.38
CP-STM-9 36.23 36.88 39.90 23.73 39.88 47.31
SP-Op(*) 54.26 70.79 69.89 56.34 72.47 75.16
SP-pNIST-5 6.51 8.28 8.36 6.49 8.49 9.01

SR-Or 18.31 32.47 32.42 24.71 39.68 43.53
SR-Ori 9.58 24.55 24.12 14.96 32.06 35.53
DR-Or 28.25 41.98 50.20 29.78 56.99 60.41
DR-Orp 39.32 50.32 57.07 40.29 62.50 65.94
DR-STM-9 33.09 46.04 50.89 35.05 60.71 62.34

ULC 59.17 87.34 89.85 52.58 85.62 92.58

Table 3: Automatic evaluation using an heterogeneous set of metrics of the in-domain SMT
system for translations into English for the MAREC test set. Results of two state-of-the-art
systems, Bing and Google, are showed for comparison.

3.3 Patent SMT performance

The evaluation of the statistical system is done on the MAREC test set and on EPOMT.
We show the evaluation on the six directions of translation between English, French and
German. Translations into English can be deeper analysed because more metrics are
available; for translations into French and German we are restricted to the lexical and
syntactic metrics.

Together with our system labelled as MOLTOSMT, we show the same evaluation for two
public SMT systems for general translation: Bing7 and Google8. These systems can be
considered the state-of-the-art of an SMT open domain translator.

7http://www.microsofttranslator.com
8http://translate.google.com
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EN2DE EN2FR

METRIC Bing Google MOLTOSMT Bing Google MOLTOSMT

WER 53.94 40.20 30.93 39.78 32.46 27.16
PER 40.49 26.99 22.82 28.14 20.82 18.00
TER 51.71 38.29 29.33 37.70 30.54 25.57
BLEU 36.30 53.43 57.59 45.73 57.86 62.40
NIST 6.95 9.01 9.40 8.64 9.70 9.95
GTM-2 27.95 39.89 42.98 32.67 40.28 44.99
MTR-st 51.27 63.34 67.84 61.55 71.56 75.71
RG-S* 42.74 62.35 63.14 58.50 71.40 72.94

CP-Oc(*) 35.79 49.88 52.89 49.65 60.17 63.71
CP-Op(*) 34.87 47.23 51.62 51.93 62.56 65.91
CP-STM-9 20.49 29.71 32.99 36.95 46.75 50.92
SP-Op(*) 59.54 65.23 69.06 40.34 45.48 47.54
SP-pNIST-5 5.47 6.23 6.95 3.27 3.46 3.60

ULC 54.42 78.32 86.89 61.49 77.58 84.61

Table 4: Automatic evaluation using a set of lexical metrics of the in-domain SMT system
for translations from English for the MAREC test set.

DE2FR FR2DE

METRIC Bing Google MOLTOSMT Bing Google MOLTOSMT

WER 56.26 37.30 34.36 69.29 43.75 35.02
PER 37.00 24.49 22.70 53.80 29.18 25.75
TER 52.53 34.88 32.29 66.95 41.79 33.55
BLEU 32.14 52.19 56.02 24.51 48.75 52.86
NIST 6.96 9.17 9.09 5.57 8.56 8.88
GTM-2 24.88 37.28 40.93 22.12 37.19 40.63
MTR-st 48.74 66.85 68.82 42.37 60.07 63.00
RG-S* 43.63 65.66 64.03 31.08 56.76 57.33

CP-Oc(*) 39.14 56.13 57.45 28.33 46.73 49.70
CP-Op(*) 42.18 58.98 60.00 28.11 44.16 48.17
CP-STM-9 27.90 42.41 44.29 16.75 27.12 30.67
SP-Op(*) 45.85 64.43 64.33 28.11 44.16 48.17
SP-pNIST-5 5.43 6.88 6.95 4.58 6.01 6.58

ULC 52.47 82.56 85.59 44.85 80.91 88.58

Table 5: As in Table 4 for the French-German language pair.
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DE2EN FR2EN

METRIC Bing Google MOLTOSMT Bing Google MOLTOSMT

WER 47.50 32.16 29.35 45.65 27.90 26.73
PER 29.29 21.55 18.64 29.79 18.98 15.62
TER 42.96 29.49 26.57 42.48 25.97 24.67
BLEU 47.21 64.99 66.38 45.54 68.34 65.12
NIST 8.47 10.57 10.38 8.54 10.77 10.54
GTM-2 27.19 41.82 41.88 28.46 44.33 44.71
MTR-st 34.78 45.37 44.96 37.71 47.43 46.37
RG-S* 53.70 74.97 70.60 58.02 76.97 74.31

CP-Oc(*) 43.26 60.95 58.17 45.63 64.16 64.40
CP-Op(*) 50.39 67.16 65.81 53.59 69.11 69.41
CP-STM-9 28.04 41.93 41.39 30.09 46.90 48.60
SP-Op(*) 52.48 71.13 68.80 55.93 72.89 72.09
SP-pNIST-5 6.57 7.96 8.24 6.86 8.54 8.82

SR-Or 22.71 32.85 34.83 27.90 42.28 42.34
SR-Ori 12.61 26.10 26.38 17.86 33.88 33.81
DR-Or 33.54 29.45 50.24 32.40 49.24 57.02
DR-Orp 43.54 38.78 55.82 44.92 57.08 63.38
DR-STM-9 35.19 33.20 50.41 38.03 52.69 59.66

ULC 58.80 81.76 88.50 57.72 87.24 89.83

Table 6: As Table 3 for the test set EPOMT.

In general, our in-domain trained system performs significantly better than the two
general purpose ones. The linear combination of metrics, ULC, is better for MOLTOSMT

in all the cases. This is mainly because of two reasons. First, it has been trained on the
specific domain and second, the tokenisation tools have been specifically developed to deal
with chemical compounds. The concrete values can be read in Tables 3, 4, 5, 6, 7 and 8.
The first three correspond to the MAREC test set and the last three to EPOMT set.

For some specific metrics and language pairs, Google is better than MOLTOSMT whereas
Bing is always below the other two. The best MOLTO system is that for French to
German translation; the worse system involves the translation from German to English.
According exclusively to lexical metrics our system shows weaknesses when translating
from German: edit distance metrics favour MOLTOSMT but n-gram matching measures are
mainly preferring Google.

The translation from English is a strong point from MOLTO both lexically and syn-
tactically for our in-domain test set. It is only for the German to English translation
that Google outperforms our system by comparing its syntax. Semantically, MOLTOSMT is
clearly the best engine, although it must be noted that semantic metrics are only available
for English.
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EN2DE EN2FR

METRIC Bing Google MOLTOSMT Bing Google MOLTOSMT

WER 53.24 38.06 35.32 42.44 30.26 30.08
PER 38.46 25.71 25.59 30.74 20.76 19.21
TER 50.78 35.87 33.47 40.01 28.50 28.35
BLEU 42.34 57.63 58.46 44.21 61.43 61.08
NIST 7.62 9.77 9.50 8.59 10.28 9.94
GTM-2 24.96 37.35 37.86 28.02 38.44 40.75
MTR-st 50.03 63.95 63.44 57.75 71.15 72.27
RG-S* 42.40 64.01 61.12 57.44 70.61 69.90

CP-Oc(*) 35.85 52.68 52.07 48.54 60.51 62.90
CP-Op(*) 34.65 49.39 50.15 52.11 65.11 66.55
CP-STM-9 21.06 31.75 32.75 37.43 49.74 52.95
SP-Op(*) 60.16 67.12 68.17 60.96 73.37 73.64
SP-pNIST-5 5.45 6.38 6.64 7.02 8.04 7.99

ULC 56.35 82.94 83.99 60.14 82.33 83.87

Table 7: As Table 4 for the test set EPOMT.

DE2FR FR2DE

METRIC Bing Google MOLTOSMT Bing Google MOLTOSMT

WER 57.84 39.07 39.36 67.51 42.63 38.54
PER 40.62 25.25 24.24 50.44 28.88 27.33
TER 54.33 36.07 36.50 64.85 40.12 36.49
BLEU 30.30 52.47 53.69 26.46 52.07 50.64
NIST 6.85 9.27 8.96 5.89 8.90 8.72
GTM-2 21.79 33.67 35.92 19.62 34.47 35.82
MTR-st 44.49 64.79 66.38 41.58 60.49 60.22
RG-S* 41.05 63.49 61.00 30.88 58.01 55.74

CP-Oc(*) 37.18 54.45 55.83 28.14 48.02 49.36
CP-Op(*) 41.23 58.56 60.11 27.71 45.24 46.64
CP-STM-9 28.38 43.57 45.23 16.91 27.96 30.38
SP-Op(*) 44.40 63.46 63.32 27.71 45.24 46.64
SP-pNIST-5 5.56 7.06 6.96 4.56 5.86 6.33

ULC 51.49 83.40 84.32 45.94 83.83 86.41

Table 8: As in Table 7 for the French-German language pair.
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DE Verwendung nach Anspruch 23 , worin das molare Verhältnis von Arginin zu Ibuprofen
0,60 : 1 beträgt .

EN The use of claim 23 , wherein the molar ratio of arginine to ibuprofen is 0.60 : 1 .

Domain The use of claim 23 , wherein the molar ratio of arginine to ibuprofen 0.60 : 1 .
Google The method of claim 23 , wherein the molar ratio of arginine to ibuprofen 0.60 : 1

is .
Bing Use of claim 23 , wherein the molar ratio of arginine to ibuprofen is 0.60 : 1 .

DE (±)-N-(3-Aminopropyl)-N,N-dimethyl-2,3-bis(syn-9-tetradecenyloxy)-1-propanaminiumbromid

EN (±)-N-(3-aminopropyl)-N,N-dimethyl-2,3-bis(syn-9-tetradeceneyloxy)-1-propanaminium bromide

Domain (±)-N-(3-Aminopropyl)-N,N-dimethyl-2,3-bis(syn-9-tetradecenyloxy)-1-propanaminiumbromid

Google (±)-N-(3-aminopropyl)-N , N-dimethyl-2 , 3-bis (syn-9-tetradecenyloxy) is 1-propanaminiumbromid

Bing (±)-N-(3-Aminopropyl)-N,N-dimethyl-2,3-bis(syn-9-tetradecenyloxy)-1-propanaminiumbromid

Table 9: Examples of wrong German-to-English translations in SMT systems.

Looking at the most common lexical metric, BLEU, MOLTOSMT is the best system in
8 out of 12 evaluations. However, when all aspects are combined, that is using ULC the
number increases to 12 out of 12. Still, in some aspects Google and MOLTOSMT are even.

Notice that the evaluation shown here differs from that reported in Deliverable 5.2.
Translations from Bing and Google have been done again with updated versions of the
translators. The first evaluation used the systems as they were in February 2011, whereas
the current one uses the systems as performed in April/May 2012. Google signed an
agreement with the EPO in March 2011 so, their training corpus might already contain
EPO’s patents at the time we have done the second evaluation. This is an explanation for
the large improvement of Google’s translator on our test sets during the last year. In the
case of Bing, results are slightly different but without any significant improvement.

Even though the MOLTOSMT system shows a good performance among SMT systems,
some of the observed translation errors would not be produced by a rule-based system,
which, on the other hand, would probably produce different ones. Table 9 displays two
translations from German into English where this is made evident. In the first one, systems
are not able to capture the different order in the verb position, although the translation is
adequate lexically. The second sentence is an example of the importance of the chemical
names. Google, for instance, tokenises the compound by the punctuation. Some of the
tokens are then translated, but the full compound is not recovered. Bing and MOLTOSMT

do not tokenise the compound, but according to the results, the word does not appear in
the training corpus and has not been translated. Ordering or concordance errors could be
easily alleviated by a GF grammar and are a motivation to combine GF and SMT for the
translation of patents.
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4 Grammatical Framework System

GF is a type-theoretical grammar formalism, mainly used for multilingual natural language
applications. Grammars in GF are represented as a pair of an abstract syntax –an inter-
lingua that captures the semantics of the grammar on a language-independent level, and
a number of concrete syntaxes –representing target languages. There are also two main
operations defined, parsing text to an abstract syntax tree and linearising trees into raw
text.

The GF resource library [35] is the most comprehensive grammar for dealing with
natural languages, as it features an abstract syntax which implements the basic syntactic
operations such as predication and complementation, and 20 concrete syntax grammars
corresponding to natural languages. This layered representation makes it possible to think
of multilingual GF grammars as a RBMT system, where translation is possible between
any pair of languages for which a concrete syntax exists. However, the translation system
thus defined is first limited by the fixed lexicon defined in the grammar, and secondly by the
syntactic constructions that it covers. For this reason, GF grammars have a difficult task
in parsing free text. Current work on patent translation has been the first attempt to use
GF for parsing un-annotated free text [10]. On the other hand, there is some recent work
on parsing the Penn Treebank with the GF resource grammar for English [2], this robust
parsing is also being applied to the translation of patents in a second type of systems.

The extension of GF to a new domain implies the construction of a specialised grammar
that expands the general resource grammar. Since in our case of application we are far
from a close and limited domain, some probabilistic components are also necessary.

Besides, because of the length of the sentences and the complicated grammatical struc-
tures, a GF grammar-based system alone cannot parse most of full sentences. This is the
problem about parsing free-text we have just said. Consequently, a first family of systems
aims at using GF for translating patent chunks, and assemble the results in a later phase.
These chunks are obtained by using external processors to GF.

Most of the work and experiments have been done for the French grammar, whereas the
German one has been done in his likeness and improved afterwards with the particularities
of German.

4.1 French Grammar

The overall system functioning was already introduced in Deliverable 5.2 so here we sum-
marise the system architecture and introduce the new modules and modifications to the
main architecture.

4.1.1 General architecture

Figures 3 and 4 show the main modules of the GF translator. All the necessary preprocess
before really translating a chunk is depicted in the first figure. After tokenising the text with
the processor of Section 2.3, claims are tagged with part-of-speech (PoS) with Genia [45],
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Source
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tokeniser
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Lemmatiser

Get Inflections
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Syntax
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SMT translation

Lemmatiser
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(ENG-FRE)

Figure 3: First modules of the GF translator. The input is preprocessed and used to build
the lexicon and mark the chunks to translate. The rhs details the lexicon building process.

a PoS tagger trained on the biomedical domain. The output of the tokeniser is used for
two purposes, as input for the chunker and as the source to build the lexicon.

From the PoS-tagged words only the ones labelled as nouns, adjectives, verbs and
adverbs are kept, since the GF library already has an extensive list of functional part-
of-speech such as prepositions and conjunctions. The extensive GF English lexicon9 is
used as a lemmatiser for the PoS-tagged words, so that one can build their correspondent
abstract syntax entry (rhs of Figure 3). Moreover, all the inflection forms of a given word
are obtained from the same resource. This process is made online. For every sentence to
translate, the lexicon is enlarged with the corresponding vocabulary. The French version
of the lexicon is built by translating the individual entries from the English lexicon (all
inflection forms) with the SMT individual system trained on the patent corpus. The
French translations are lemmatised with an extensive GF French lexicon, based on the
large morphological lexicon Morphalou [37] in order to get their inflection table. The

9The GF English lexicon is based on the Oxford Advanced Learner’s Dictionary, and contains around
50,000 English words.
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no

yes

Figure 4: Chunk translation. Those that cannot be translated by GF are kept in English
and translated by the SMT system.

part-of-speech is assumed to be the same as in the English counterpart.

The following step is chunk translation for what the grammar has been adapted (Fig-
ure 4). The source text is chunked into noun phrases (NP), adjective phrases (AdjP),
adverbial and prepositional phrases (AdvP), relative pronouns (RelP) and verb phrases
(VP). Other kinds are ignored. Whereas NPs can be translated directly, a VP, RelP or
AdjP needs to have an NP to agree with, otherwise the GF grammar cannot know which
linearisation form to choose. For NP and AdvP which can be translated independently,
a mapping into corresponding GF categories is defined, whereas for VP, RelP and AdjP,
their GF mapping requires an NP in order to build their correspondent linearisation. If the
required NP is not found, the chunk is sent to the SMT. Also, the VP category from the
English and French GF resource grammars is implemented as a discontinuous category, so
that it can handle discontinuous constituents in English and clitics in French. The patent
grammar uses a category built on top of VP, which represents the flattened version of a
VP, with all the constituents combined.

After the annotation, a postprocess is necessary to deal with the specifics of patents.
Some PoS tags are updated and merged. For instance, the token “said” is tagged as a verb
whereas in patents it acts as a definite article (The use of claim 1, wherein said use is
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intramuscular.). With the wrong tagging it would not be merged with the following noun
into a noun phrase. That sometimes forces to modify the PoS tag of the following word
and changes some of the chunks labels.

The last step is the translation of the individual chunks. The translation sequence is
done from left to right, so that the last-occurring NP is retained, and is used to make the
agreement with VP, RelP or AdjP. If no such NP can be found, or if the GF grammar is
not capable to parse the one indicated by the chunker, the current chunk is passed to the
SMT. If the grammar can parse, it parses the corresponding English chunks to obtain a
forest of abstract syntax trees. In order to disambiguate among the possible options, all of
them are linearised, looked up in the French corpus and the most frequent linearisation is
kept as the best translation. For the system where we use more than one GF translation
this step is ignored. Finally, chunks are combined together with the punctuation marks,
other non-included elements and untranslated chunks in the same order as in the source
language.

We call this system Version 1. Together with a full hybrid system that makes use
of it, it has been published in Ref. [10] and explained in the previous deliverable. After
these first results, the system was modified in order to make all the components interact
automatically as a one-click system, avoiding the need of any manual intervention. The
details of the final architecture are given in the following.

4.1.2 Structure

As it has been said before, the patent grammar is build on the resource grammars with
several additions for dealing with chunks. The main contributions are:

• 4 new categories for parsing chunks (Parse AdjP, Parse AdvP, Parse VP, Parse NP)
and 3 for agreement among them (NP VP, NP AdjP, NP RelP)

• 8 functions that deal with these agreements and the parsing of chunks

• 9 extensions to the resource grammar dealing with general-purpose constructions
not supported so far. Examples of these constructions with descriptive names are
Nominalisation (“recovering the antibodies”), Aggregation (mouse antibody – an-
tibody of mouse), Adjectivisation (“immunised mouse”) or GerundAsAdj (“fol-
lowing states”)

• 13 constructions to deal with claim-specific data such as any of the claims, of claim,
marks of image, chemical compounds or numbers as proper names

• 8 structural words typical for patent domain case such as which, said, wherein, ac-
cording to or characterized in that
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4.1.3 Domain-specific lexicon

Since the lexicon for the prototype system in Version 1 was acquired semi-automatically,
we devised several ways of fully automating the process. For this, one needs to construct a
base dictionary from which the final lexicon are built. Two different base dictionaries are
created:

Core Lexicon. The core lexicon is made of 198 words. These elements are selected as
the most common English words appearing in the training corpus used in the SMT system.
The English words have been translated to French and German and, since it is a small
dictionary, it has been manually checked assuring a correct translation. The dictionary
contains only single words, not multiple mappings or phrases but it represents the starting
point for the online lexicon acquisition.

Static Lexicon. The static lexicon is a larger lexicon made of 3,983 words. It is built
from the translation tables obtained with Moses from the GIZA++ alignments on the parallel
SMT training corpus. This parallel lexicon is constructed by looking for the most likely
translation of the English words in the translation tables. Contrary to the core lexicon,
the static one contains one-to-many translations. The resource has been also manually
checked.

4.2 German Grammar

4.2.1 Structure

In the final version of the translator there is no difference in the basic structure for the
grammars for French and German as the grammars are built modularly and they share
most of the modules. So, the German patents grammar is built on the resource grammar
with the same additions of Section 4.1.2 and some specifications. The only addition exclu-
sively for German is a component for analysing compounds such as Nucleotidsequenz (nu-
cleotide+sequence). This implied the development of a small grammar with 10 constructs
to deal with a compositional way of forming compounds. This grammar was necessary to
build a dictionary for compounds (see below).

Nominalisation. The function for nominalisation has been reimplemented in order to
reflect German idioms – for instance, German does not have nominalisation of verbs via
the gerund form (which form does not even exist in the language); instead, the infinitive
is used. The definite article, despite not being strictly necessary, was also added to match
better with the German files – while there are a number of cases where the article is left
out and while it can reasonably be omitted in sentence-initial position, if the register used
in the text is appropriate (which the patent claims certainly are), the original claims also
have occurrences of the definite article, which in many cases makes the text more readable.
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For this, the function has to take a VPSlash instead of a fully formed VP, so the
infinitive can be extracted.

NominalisationSlash vs np = {
s = \\c => (DefArt).s ! False ! R.Sg ! R.Neutr ! c ++ "|+"

++ vs.s.s ! R.VInf False ++ S.possess_Prep.s

++ np.s ! R.NPP R.CVonDat ;

a = np.a ; isPron = False ; hasComma = False

} ;

The |+ symbol indicates that the following word (in this case, the verb infinitve) be upper-
cased and thus made into a noun. Thus, immunising the mouse becomes das Immunisieren
von der Maus. While it would be slightly more idiomatic to use the genitive case instead
of a prepositional construction (das Immunisieren der Maus), using a prepositional case
is safer, because we have to take mass NPs (e.g. milk) into consideration, which, having
no article in many cases, behave differently. This is what the function output looks like in
the GF interpreter:

Patents> l NominalisationSlash

(SlashV2a contain V2)

(DetCN (DetQuant DefArt NumSg) claim N)

containing the claim

das |+ enthalten vom Anspruch

Relative sentence conversion. Another issue that was taken into account is the fact
that attributive gerund/participle sentences (such as pharmaceutical composition compris-
ing an aqueous solution (...)) are not nearly as common in German as they are in English
or even French. While the German patent claims contain their fair share of constructions
like pharmazeutische Zusammensetzung, umfassend, using a participle construction with
auxiliary verbs like haben sounds quite awkward. This is why it was decided to replace all
participle sentences with the corresponding relative clauses in the chunking steps.

The abstract grammar contains the function AgreeNP VPRS : NP → VP → NP RS ;

which in turn makes use of the conversion function VPToRS : VP → RS ;. In the German
grammar, the implementation of VPToRS looks as follows, with the new tree being built
using parameters from the resource grammar:

VPToRS vp = let

tmp : {s : Str ; a : Anteriority ; m : R.Mood ; t : ParamX.Tense} =

{s = [] ; a = ParamX.Simul ; m = R.MIndic ; t = ParamX.Pres}
in

UseRCl tmp PPos (RelVP Which vp) ;

This is being used in the agreement function:
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AgreeNP VPRS np vp = let gen : R.Gender = R.genderAgr np.a ;

num : R.Number = R.numberAgr np.a ; in

{s = (VPToRS vp).s ! (R.gennum gen num) } ;

Thus the RP can use the preceding NP’s parameters in agreement.

With these constructions, a first system used a grammar with twice as many construc-
tions as the French grammar, but because of the need of making the system uniform in the
target languages and the small difference in performance, the German part was modified
in order to fit in the initial framework.

4.2.2 Domain-specific lexicon

Core Lexicon. The core lexicon is built with the same 198 most frequent English words
as for French.

Static Lexicon. The static lexicon is built using the SMT word alignments. From the
aligned word-to-word pairs, the ones with the highest respective probabilities are selected
and lemmatised using the GF dictionary and smart paradigms10. In the same step, word
pairs get matched with a previously SMT-built English lexicon based on the patents corpus;
so in the end, we are left with mappings from said English lexicon to entries from the
German GF dictionary DictGer.

Using a dictionary extracted from Wiktionary and the word alignment tables, only
about 33% of the domain-specific abstract lexicon was covered11. With the help of the
entries extracted from the patents corpus, coverage could be extended to 50%. After some
corrections, the current coverage is now at around 80%, with the remaining entries mostly
being PoS mismatches or otherwise faulty. 43,084 entries build up GerLex in this way.

Dictionary of compounds. Aside from cases where word alignment did not succeed
(e.g. where verbs would be wrongly mapped to prepositions because of high cooccurrence)
or part-of-speech mismatches (which cannot be remedied, at least not automatically12), a
major problem that had to be tackled while building the lexicon for the patents transla-
tion system was the question of how to align compound nouns. While a recogniser and

10A smart paradigm is GF function that takes the basic form of a word (singular nominative for nouns,
infinitive for verbs, masculine singular for adjectives) and builds the whole GF representation, by using a
set of rules for inferring the other forms.

11This number does not count proper nouns, which are always translated with SMT and thus need not
be included in the GF lexicon.

12Consider the pair carboxylic acid and Karboxylsäure, where the German noun is a compound of two
common nouns, and the English one consists of an adjective and a noun. It would be wrong to translate
carboxylic acid with karboxylische Säure, but it is obviously also not possible to map adjectives to nouns.
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parser for chemical compounds like 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-
dicarboxylic acid-3-(N-benzyl-4-piperidinyl)ester-5-methyl ester hydrochloride already ex-
ists, the treatment of German compound nouns is an entirely different and notoriously
tricky issue.

The lexicon the GF chunk translator uses is generated using word-to-word alignment
with GIZA++ and contains one-to-one and one-to-many translations. While this was a work-
able approach in translating English to French, the mappings are less unambiguous in the
case of English to German. The English compound nucleotide sequence translates to French
as séquence de nucleotides, which makes it possible to do a mapping from nucleotide to
nucleotides and from sequence to séquence. However, the German equivalent of nucleotide
sequence is Nucleotidsequenz, as German is a language which compounds nouns by con-
catenating the constituents. If we now attempt a one-to-one mapping, we will inevitably
end up with nucleotide → Nucleotidsequenz and sequence → Nucleotidsequenz.

There are two accepted ways to deal with the problem [34]:

• split German compounds in the original corpus used in order to make one-to-one
mapping possible (i.e. split Nucleotidsequenz into Nucleotid and Sequenz ); rejoin the
constituents in a later step

• create new “single-word” compound entries for English (i.e. create a new English
word nucleotide sequence, which can be mapped to the German compound)

In our approach we decided to go with the first method by applying a näıve heuristic
of looking up substrings of compound words in the dictionary and splitting them if there
was a match. With this method a dictionary with 7,774 entries is built.

4.3 System definition and patent GF performance

With the grammar and the lexical resources built for patents one can define different
systems. The main differences among these rely on the characteristics of the lexicon and
the number of translations used which, in turn, depend on the confidence that GF assigns
to them. The following list describes these differences.

Static. Uses the static dictionaries for French and German and does not add new lexical
items.

Runtime safe. Uses a base lexicon (core or static) to start with and adds the lexical
items that are not present there. The method assumes that the English words are found
in the English monolingual dictionary and that the target translation is found in the
corresponding target dictionary and has the right PoS tag. We assigned a confidence score
to each of the translated chunks. The score is 4 for unambiguous translations and 1 for
the ambiguous ones.
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Runtime unsafe. Uses a base lexicon (core or static) to start with and adds the lexical
items that are not present there. The method adds words regardless whether they are
found in the monolingual dictionaries and builds the representation with the help of smart
paradigms. This approach is used for nouns, adjectives and adverbs. As before, chunk
translations are labelled with confidence scores: 4 for translations that are not ambiguous
and contain only ”safe” words from dictionaries, 1 for translations that are ”safe” but
ambiguous, and 0.2 for translations that contain at least an ”unsafe” word. Dependent
”safe” elements such as RelP, AdvP and VP which depend on an NP are labelled as 0.2 in
this system.

Version 1. The first architecture used the runtime unsafe lexicon acquisition without
confidence scores. That forced some manual intervention in order to discard wrong trans-
lations, most of them actually labelled with a score of 0.2. This option is not used anymore,
but it is shown for comparison at some points in the following analysis.

Base. Uses the core lexicon as start lexicon and adds the missing lexical items on top of
these by one of the two methods - safe/unsafe.

Extended. Uses the static dictionaries as starting point instead of the core lexicon, and
adds the missing lexical items on top of these by one of the two methods - safe/unsafe.

Single. Grammar translations for chunks are one-to-one. In case of ambiguities, and
therefore multiple translation options, only the most likely translation is kept.

Multiple. Multiple grammar translations for chunks. In case of ambiguities all the pos-
sibilities are kept. Individual translations have their own probability - for the unsafe case
where the words that form the chunk play an important role in computing the probability
of the chunk translation.

Table 10 summarises these options and the final systems that can be built with them.
Notice that neither multiple translations nor confidence scores assigned at this point have
any consequence in the translation. The first translation of a chunk irrespective of its
probability is going to be used for the GF system. However, having multiple options and
their confidence is important when combining with other translation options from the SMT
system (see Section 7).

Regarding the GF translation a first thing to notice is that the number of total chunks
is different from the system introduced in the previous deliverable and in Ref. [10]. In
order to be consistent with the translation of the SMT system, the tokeniser used in the
GF translation has been changed from that available in Genia to our in-house tokeniser.
Although both tokenisers are specialised for the biochemical domain results differ and, con-
sequently, the number and type of detected chunks differs as well. The Genia chunker with
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Base Lexicon Multiple
lexicon acquisition GF options

GF-Sts – static ◦
GF-SaBs base safe ◦
GF-UnBs base unsafe ◦
GF-SaEs extended safe ◦
GF-UnEs extended unsafe ◦

GF-Stm – static •
GF-SaBm base safe •
GF-UnBm base unsafe •
GF-SaEm extended safe •
GF-UnEm extended unsafe •

Table 10: Main characteristics and nomenclature for the grammars.

its own tokeniser divides the test set in 11,002 chunks, whereas with the in-house tokeniser
the number diminishes to 10,456. The difference is mainly due to over-tokenisation that
Genia applies to compound names with dashes or commas.

Table 11 shows some figures on the number of chunks that can be translated by GF
according to its type. Also the percentage with respect to the total number for every type
and the total number of chunks are indicated. Notice that punctuation is not included in
these numbers as GF grammars do not deal with it13. Considering punctuation would add
3,107 chunks more.

RelPs are the most translated chunks in percentage for any of the systems. That is,
words such as which or wherein are always translated unless there is a lack of agreement.
However, they are not the most numerous, and most of the GF contribution comes from
NPs and AdvPs. The system with a static lexicon is the one with more difficulties to
parse the chunks and this is reflected in a lower percentage of translation for any kind of
chunk. The safe and unsafe versions have a similar performance and using the extended
base lexicon improves specially the translation of VPs and AdvPs but damages the AdjPs.

There might be several reasons why GF cannot translate the chunks. First and most
important, in some cases the chunks cannot be parsed by the GF English grammar. When
parsed, there might be a lack of information about agreement or, in case of dynamic
lexicons, missing words in the bilingual lexicon. As an example let’s see the effect on the
GF-Sts system. In this case 6,051 chunks cannot be translated in front of the 4,255 that
do. In a 92% of the cases chunks cannot be translated because of the parsing, and the
remaining 8% is due to missing the agreement. These numbers are representative of all the
systems, with a significant difference when the lexicon is not fully static. For the GF-SaBs
system 4,175 chunks are not translated: 84% because the chunk cannot be parsed, 5%
because a lack of agreement and the remaining 11% because some words are not found in

13This is also true for coordinating conjunctions between chunks.
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Version 1 GF-Sts GF-SaBs

NP 2,366 (52.2%) 1,741 (44.35%) 2,781 (70.44%)
VP 275 (5.7%) 489 (30.52%) 702 (43.82%)
AdjP 82 (36.8%) 49 (33.11%) 105 (70.95%)
AdvP 1,960 (50.3%) 1,460 (37.64%) 1,940 (50.01%)
RelP 648 (88.3%) 506 (69.41%) 603 (82.72%)

Sum 5,301 (48.2%) 4,255 (41.29%) 6,131 (59.49%)

Total 11,002 10,306 10,306

GF-UnBs GF-SaEs GF-UnEs

NP 2,866 (69.94%) 2,811 (71.20%) 2,896 (70.67%)
VP 701 (43.76%) 873 (54.49%) 872 (54.43%)
AdjP 103 (69.59%) 87 (58.78%) 85 (57.43%)
AdvP 1,855 (47.82%) 2,037 (52.51%) 1,952 (50.32%)
RelP 599 (82.17%) 603 (82.72%) 599 (82.17%)

Sum 6,124 (58.57%) 6,411 (62.21%) 6,404 (61.25%)

Total 10,456 10,306 10,456

Table 11: Number of chunks translated by GF and the percentage of the total chunks of
the correponding type for the French grammars.

the lexicon.

Comparing Version 1 and the new systems, one can see that the decrease in the number
of chunks given by the different tokenisation does not represent a decrease on the total
number of chunks that can be translated unless, of course, for the system with only a
static lexicon. In fact, the performance has been improved, being the major improvement
that of the translation of NP and VP: more than 400 NPs are now translated reaching a
70% of all the parsed NPs. This is probably because the lexicon is better quality after
polishing the rules for translating words and this especially applies to nouns since they
account for more than half of the lexicon.

To study the quality of the translated chunks we estimate a set of lexical and syntactic
metrics on the MAREC and EPOMT test sets. Since more than half of the chunks are not
translated, most of the sentences contain chunks in English, the source language. The
coverage is then very low and all the metrics show low scores. The aim of this evaluation
is to see which of the systems is performing the best, although all of them will give poor
results when considered as a full translation system.

For both test sets and metrics (see Table 12 for MAREC and Table 13 for EPOMT)
the best system is GF-SaEs, that is, the GF that uses an online safe lexicon starting with
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

GF-Sts 67.02 57.78 65.74 19.91 4.74 18.24 30.78 21.18 56.20
GF-SaBs 67.96 52.27 65.76 20.41 4.98 18.09 33.64 23.30 60.02
GF-SaEs 66.62 51.14 64.47 21.69 5.17 18.87 35.36 26.20 64.45
GF-UnBs 68.02 52.42 65.84 20.31 4.97 18.04 33.54 23.19 59.75
GF-UnEs 66.68 51.30 64.55 21.57 5.15 18.78 35.25 26.06 64.13

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

GF-Sts 21.55 22.00 17.98 21.65 1.66 84.11
GF-SaBs 25.13 25.95 20.58 24.44 1.91 97.07
GF-SaEs 25.92 26.83 21.06 25.21 1.97 99.98
GF-UnBs 25.14 25.82 20.63 24.35 1.89 96.70
GF-UnEs 25.89 26.69 21.09 25.12 1.94 99.55

Table 12: GF translation for the English-to-French language pair for the MAREC test set.

WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

GF-Sts 65.29 56.84 64.29 22.84 5.23 16.36 31.68 20.31 55.34
GF-SaBs 63.26 51.68 61.97 24.35 5.62 16.72 34.69 21.72 60.90
GF-SaEs 61.92 50.35 60.48 25.36 5.81 17.42 36.26 24.97 65.31
GF-UnBs 63.38 51.83 62.09 24.27 5.61 16.66 34.55 21.59 60.60
GF-UnEs 62.03 50.49 60.60 25.26 5.80 17.35 36.12 24.78 64.97

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

GF-Sts 22.21 23.92 19.60 31.19 4.16 86.90
GF-SaBs 24.53 26.32 21.75 34.48 4.49 95.57
GF-SaEs 25.94 28.04 22.46 36.29 4.60 100.00
GF-UnBs 24.36 26.11 21.59 34.34 4.47 94.98
GF-UnEs 25.79 27.87 22.23 36.13 4.58 99.39

Table 13: GF translation for the English-to-French language pair for the EPOMT test set.

the extended one. All the scores are consistent in first preferring those systems that start
with the extended lexicon, then those starting from the core lexicon and finally the static
version. Again, the differences between the safe and the unsafe acquisition are not so
important.

Up to now, all the comments refer to the English-to-French translation but a similar
analysis and conclusions can be established for the English-to-German systems. Table 14
shows the number of chunks translated by GF and the percentage of the total chunks of
the corresponding type for the German grammars. The number of chunks that can be
translated with only a static lexicon are much less than for French: only a 22% of the
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GF-Sts GF-SaBs GF-UnBs GF-SaEs GF-UnEs

NP 1,001 (25.35%) 2,746 (69.55%) 2,779 (67.81%) 2,796 (70.82%) 2,827 (70.67%)
VP 186 (11.61%) 676 (42.20%) 674 (42.07%) 742 (46.32%) 741 (54.43%)
AdjP 21 (14.19%) 106 (71.62%) 104 (70.27%) 97 (65.54%) 97 (57.43%)
AdvP 550 (14.18%) 1,876 (48.36%) 1,843 (47.51%) 1,871 (48.23%) 1,840 (50.32%)
RelP 506 (69.41%) 603 (82.72%) 566 (77.64%) 603 (82.72%) 590 (82.17%)

Sum 2,264 (21.97%) 6,007 (58.29%) 5,966 (57.06%) 6,109 (59.27%) 6,095 (59.29%)

Total 10,306 10,306 10,456 10,306 10,456

Table 14: Number of chunks translated by GF and the percentage of the total chunks of
the correponding type for the German grammars.

WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

GF-Sts 84.21 76.66 83.52 15.07 3.44 14.26 23.23 12.44 44.35
GF-SaBs 73.69 62.52 72.25 20.74 4.72 18.49 32.69 20.42 68.05
GF-SaEs 75.58 64.75 74.49 19.69 4.50 17.75 31.23 18.75 63.78
GF-UnBs 74.21 63.04 72.77 20.39 4.67 18.24 32.26 20.12 66.97
GF-UnEs 76.00 65.12 74.91 19.48 4.47 17.61 30.94 18.54 63.06

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

GF-Sts 13.41 12.91 8.42 12.91 2.82 69.03
GF-SaBs 20.02 19.04 12.15 19.04 3.82 99.87
GF-SaEs 19.02 18.52 12.13 18.52 3.85 97.89
GF-UnBs 19.77 18.81 12.04 18.81 3.79 98.75
GF-UnEs 18.83 18.40 12.10 18.40 3.83 97.30

Table 15: GF translation for the English-to-German language pair for the MAREC test
set.

chunks can be translated, a half of the previous case. For the other systems results are
comparable and around a 60% of the chunks have a GF translation. The percentages for
every kind of chunk are also similar being RelPs the most translated elements and NPs the
most numerous ones.

In this case also all the metrics in the automatic evaluation (Table 15 for MAREC and
Table 16 for EPOMT) favour a same system. The safe way of acquiring the lexicon is still
the best, but starting with the core lexicon produces better translations than starting with
the extended lexicon as happened for French. The difference is significant: more than 4
points of ULC and 1 of BLEU for example. So, irrespective of the online methodology
to extract the lexicon (safe vs. unsafe) the core lexicon is the best resource to start with,
followed by the extended lexicon and finally a unique static lexicon gives the poorest scores
for the GF engine.
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

GF-Sts 79.20 70.18 78.81 25.67 4.68 13.42 25.72 11.39 48.53
GF-SaBs 70.59 58.95 69.68 29.69 5.63 16.52 33.69 18.70 67.31
GF-SaEs 73.20 61.45 72.42 28.56 5.39 15.66 31.36 16.86 62.26
GF-UnBs 70.75 59.10 69.83 29.64 5.62 16.48 33.62 18.59 67.06
GF-UnEs 73.32 61.57 72.54 28.53 5.38 15.64 31.33 16.77 62.10

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

GF-Sts 12.92 12.97 8.72 12.97 2.87 70.66
GF-SaBs 18.98 18.57 12.44 18.57 3.81 100.00
GF-SaEs 17.61 17.70 12.32 17.70 3.80 96.43
GF-UnBs 18.88 18.49 12.42 18.49 3.80 99.62
GF-UnEs 17.53 17.67 12.31 17.67 3.79 96.22

Table 16: GF translation for the English-to-German language pair for the EPOMT test set.

4.4 Further improvements

When analysing the results (both here and with the hybrid outputs of Section 7) for the
English-to-French translation one can conclude that the GF translator is difficult to im-
prove. First, because the SMT system is very good already, and the GF cannot contribute
with better translations and, second, because problems are usually not syntax related, so
GF cannot bring novelties working on a word-to-word basis. On the other hand, there is
more room for improvement in German assuming that one could obtain larger chunks in
the first place. In this way the long distance dependencies - like complementation, pred-
icates, could be resolved by the grammar and hence improve over the SMT translations
which do not cope well with these phenomena. Some examples of these problems are given
below.

Missing complements. Since sometimes there are elements between a verb and its
object complement, the chunker may not recognise that the two should really belong to-
gether. This means two things – first, if the complement is a NP, it might not stand in
the accusative case like it would if the VP consisted from the verb and the noun phrase
together; and second, GF will not parse or translate verbs which have too many or too few
arguments. By default, all verbs in the domain-specific dictionary used are two-arity verbs,
i.e. they require a direct object. If this object is not found because it is separated from the
verb, the whole phrase will not be translated. The same might apply to verb phrases with
some other kind of complement. This is why it might make sense to introduce functions
which parse verb phrases which would normally require to include a complement without
it; in these cases it suffices to parse and translate the finite verb of the verb phrase, i.e.
the string field of the verb.

A similar situation arises in cases where the verb is a copula with an adjectival or
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nominal complement. However, this is not so much a problem of the verb itself, since GF
is able to translate the standalone copula in the sense of ‘to exist’, but of word order: VPs
in German may have different constituent orderings, depending on the type of sentence. In
subordinate clauses (which are essentially all of the verb phrases occurring in the patent
claims, since those usually consist only of noun phrases), the constituents are in a different
order, specifically, the finite verb in a verb phrase always comes last.

Long-distance agreement and agreement with embedded NPs. There are a few
issues which could have not been solved so far with the chunk-based approach. One of the
greatest strength of a rule-based system like GF is the handling of long-distance agreement,
e.g. between subject noun phrase and predicate verb. However, there are cases where it
cannot be reasonably determined which noun phrase the verb phrase or relative pronoun
should agree with: In a claim like the (...) dosage form of claim 1, which is a tablet (...),
the relative pronoun could be agreeing with the subject noun dosage form, but theoretically
also with the noun phrase embedded in the adverbial phrase: claim 1. In this example,
the agreement is correct, but there are a number of dubious cases.

Another issue with even more room for ambiguity is the case where multiple noun
phrases are case-governed by a preposition, e.g. (...) a condition selected from gastric ul-
cers, duodenal ulcers, erosions of the stomach and esophagus, erosive gastritis (...) where
actually all NPs are governed by the preposition from. In the English and French grammar
this obviously does not matter much, since these languages do not have as much morpholog-
ically marked agreement as German does. It is however not feasible to enforce preposition
agreement over chunk boundaries, partly because oftentimes discerning is hard even for
the human reader, and partly because noun phrases with adverbial attributes (erosions of
the stomach) would greatly disturb the system.

5 General Lexical Resources

In addition to the domain specific lexicons that were tailored specifically to the patent
corpus and have been explained in the previous section, we also wanted to create a general
purpose lexicon that is reusable in other GF applications. This is also needed in the hybrid
system where GF was used as a primary translation engine.

In the previous case, lexicons were build with the help of the resources obtained from
in-domain parallel corpus, that is, lexical and phrase translation tables. Here, we need to
build general lexicons so they are extracted from all-purpose resources such as WordNet
and the Apertium dictionaries.

5.1 Uni-Sense Lexicons

We already had a comprehensive monolingual lexicon of about 43,000 words for English.
This lexicon was originally based on the Oxford Advanced Learner’s dictionary [28] but
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it is now tuned to match with the syntactic categories used in the resource library. In
MOLTO, we extended it further in three directions.

First of all, the lexicon was still small compared to lexical resources such as the Prince-
ton WordNet [13] which provides a much bigger repository of English lexical data. We
extended our lexicon with new lemmas extracted from WordNet. The result is a full-form
English lexicon of around 65,000 lemmas. The slight difficulty here was that WordNet
provides rich semantic information but no morphological information. This was solved by
taking advantage of the fact that most irregular English words are already in the existing
dictionary. For the new words we just derived the morphological table by using the mor-
phological functions provided by the resource library. The accuracy of the paradigms was
already evaluated in [8] and it has been shown that for English it is almost always possible
to guess the fill-form table by using only the basic form. Although mistakes are possible
it would take too much time to check all new words one by one.

Furthermore, we extended the lexicon with a list of prepositions which we collected
from the Penn Treebank and from an article in Wikipedia about the English prepositions.
The most important contribution of the latest is a list of multiword idiomatic prepositions
which are harder to identify in the treebank.

Finally, we extended all verbs in the lexicon with information about their valency
frames. We looked up every verb from the Penn Treebank and we reconstructed its valency
frame from the context in the annotated sentences. After that the extracted information
was added to the corresponding entry in the GF lexicon. The valency information is
crucial when the lexicon is used in combination with the resource grammar for parsing and
generation.

Having a good English lexicon is only the baseline but for translation we also need trans-
lation dictionaries, and we started building such resource for English-Bulgarian, English-
Finnish, English-German, English-Hindi and English-Urdu by reusing existing open-source
resources.

We extracted an English-German dictionary of 9,700 lemmas from Wiktionary. This
dictionary provides full-form inflection tables for all German words found in Wiktionary
and it shares one and the same abstract syntax with the English lexicon. This means that
it can be used both as a morphological lexicon for German and as a translation dictionary
from English to German. Unfortunately, as it could be seen, the coverage of this dictionary
is much smaller, since it covers only 9,700 of the total 65,000 English entries.

The English-Bulgarian dictionary was bootstrapped from the translation dictionary for
English-Macedonian, which we got from the Apertium system [14]. Since Bulgarian and
Macedonian are closely related we were able to reuse this resource by automatically replac-
ing some regular alternations between the two languages, followed by manual postediting,
filtering and extensions. We also added some more lexical entries from the Universal Word-
Net [7]. Again, both resources do not provide morphological information, but we were able
to complement them with the morphological lexicon from the Bulgarian spell checker in
Open Office.

The parallel data for building the Finnish and Hindi dictionaries was taken from the
corresponding WordNets [18, 23]. For Urdu the data was extracted from different resources
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including the Waseem Siddiqi’s English-Urdu dictionary14.
The following table summarizes the number of lemmas in the different dictionaries:

Bulgarian Finnish English German Hindi Urdu

10,134 56,000 65,000 9,700 25,800 30,000

All this dictionaries share the same abstract syntax which makes it possible to use them
as translation dictionaries. However, since we started from an abstract syntax originally
designed for the monolingual English lexicon, those dictionaries have the severe problem
that each English word must be unambiguously translated as exactly one word in the target
language. For example the English-Hindi dictionary was built by simply selecting the first
Hindi word which is essentially a random choice. As the words can have multiple senses,
and it is often very hard to find one-to-one word mappings between languages, we also
developed another abstract syntax which can accommodate several senses per lemma.

5.2 Multi-Sense Lexicons

A multi-sense lexicon is a more comprehensive lexicon and it contains multiple word senses
with their translations to other languages. These multi-sense lexicons have been developed
using data from the Princeton WordNet [13] and the Universal WordNet [7]. The original
Princeton WordNet defines a set of word senses, and the Universal WordNet maps them
to different languages. In this multilingual scenario, the WordNet senses can be seen as an
abstract representation, while the lexical units can be seen as the concrete representation
of those senses in different languages.

The Princeton WordNet is distributed in the form of different database files. For each
of the four lexical categories (i.e. noun, verb, adjective, and adverb), two files named
“index.pos” and “data.pos” are provided, where “pos” is noun, verb, adj and adv. Each
of the “index.pos” files contain all words, including synonyms of the words, found in the
corresponding part of speech category. While, each of the “data.pos” files contain infor-
mation about unique senses belonging to the corresponding part of speech category, for
our purposes, there were two possible choices to build an abstract representation of the
lexicon:

1. To include all words of the four lexical categories, and also their synonyms (i.e. to
build the lexicon from “index.pos” files)

2. To include only unique senses of the four categories with one word per sense, but not
the synonyms (i.e. to build the lexicon from the “data.pos” files)

To better understand this difference, consider the words brother and buddy. The word
brother has five senses with sense offsets “08111676”, “08112052”, “08112961”, “08112265”

14Freely available for downloading and editing at
http://www.scribd.com/doc/8509778/English-to-Urdu-Dictionary
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and “08111905” in the Princeton WordNet 1.7.1, while the word buddy has only one sense
with the sense offset ’08112961’. Choosing option (1) means that we have to include the
following entries in our abstract lexicon:

brother_08111676_N

brother_08112052_N

brother_08112961_N

brother_08112265_N

brother_08111905_N

buddy_08112961_N

We can see that the sense with the offset “08112961” is duplicated in the lexicon: once
with the lemma brother and then with the lemma buddy. However, if we choose option
(2), we end up with the following entries:

brother_08111676_N

brother_08112052_N

brother_08112265_N

brother_08111905_N

buddy_08112961_N

Since the file “data.noun” lists the unique senses rather than the words, there will be no
duplication of the senses. However, the choice has an obvious effect on the lexicon coverage,
and depending on whether we want to use it as a parsing or as a linearisation lexicon, the
choice becomes critical. Currently, we choose option (2) for the following reason.

1. The Universal WordNet provides mappings for synsets (i.e. unique senses) but not
for the individual synonyms of the synsets. If we choose option (1), as mentioned
previously, we have to list all synonyms in our abstract representation. But, as
translations are available only for synsets, we have to put the same translation against
each of the synonym of the synset in our concrete representations. This will not gain
anything but will increase the size of the lexicon and hence may have a negative
impact on the processing speed.

Our abstract GF lexicon covers 91,516 synsets out of around 111,273 synsets in the
WordNet 1.7.1. We excluded some of the synsets with multi-word lemmas. We consider
them more of a syntactic category rather than a lexical category, and hence deal with them
at the syntax level. Here, is a small segment of our abstract GF lexicon:

abstract LinkedDictAbs = Cat ** {

fun consentaneous_00526696_A : A ;

fun consecutive_01624944_A : A ;

fun consequently_00061939_Adv : Adv ;

fun abruptly_00060956_Adv : Adv ;

fun consequence_09378924_N : N ;
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fun consolidation_00943406_N : N ;

fun consent_05596596_N : N ;

fun conservation_06171333_N : N ;

fun conspire_00562077_V : V ;

fun sing_01362553_V2 : V2 ;

........

........

}

The first line in the above given code states that the module LinkedDictAbs is an
abstract syntax. It extends another module labelled Cat which defines the morphological
categories “A”, “Adv”, “N” and “V”. These categories correspond to the “adjective”,
“adverb”, “noun”, and “verb” categories in the WordNet. However, note that in the GF
resource library we have a much fine-grained subcategorization for verbs. We sub-categorize
them according to their valencies i.e “V” is for intransitive, and “V2” for transitive verbs.
The valency information we took from the monolingual English dictionary described in the
previous section.
Each entry in the module is of the following general type:

fun lemma_senseOffset_T : T;

The keyword fun declares each entry as a function of the type “T”. The function name is
composed of lemma, sense offset and the type, where lemma and sense offset are the same
as in the Princeton WordNet 1.7.1, while “T” is one of the lexical types in the GF resource
library.

The abstract representation serves as a pivot for all concrete representations. We
build the concrete representations for the different languages by using the translations
obtained from the Universal WordNet data and the morphological paradigms in GF [8].
The Universal WordNet translations are tagged with a sense offset from WordNet 3.015

and also with a confidence score. As, an example consider the following segment form
the Universal WordNet data, showing German translations for the noun synset with offset
“13810818” and lemma rest (in the sense of remainder).

n13810818 Rest 1.052756

n13810818 Abbrand 0.954620

n13810818 Ruckstand 0.924376

n13810818 Restbetrag 0.662388

n13810818 Restauflage 0.446788

n13810818 Restglied 0.446788

n13810818 Restbestand 0.446788

n13810818 Residuum 0.409192

15However, in our concrete lexicons we match them to WordNet 1.7.1 for the reason that in our recent
experiments, we are using these lexicons to build a free text translator. This translation system is using
an external Word-Sense Disambiguator, which is based on WordNet 1.7.1. However, this can easily be
mapped back and forth to other WordNet versions.
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Here, each entry has the following general format.

posSenseOffset translation confidence-score

In cases, where we have more than one candidate translations for the same sense (as in the
above case), we select the best one (i.e. with the maximum confidence score) and put it in
the concrete grammar. Next, we give a small segment from the German concrete lexicon
for the above given abstract lexicon segment.

concrete LinkedDictGer of LinkedDictAbs = CatGer ** open

ParadigmsGer, IrregGer,Prelude in {

lin consentaneous_00526696_A = mkA "einstimmig" ;

lin consecutive_01624944_A = mkA "aufeinanderfolgend" ;

lin consequently_00061939_Adv = mkAdv "infolgedessen" ;

lin abruptly_00060956_Adv = mkAdv "gech" ;

lin consequence_09378924_N = mkN "Auswirkung" ;

lin consolidation_00943406_N = mkN "Konsolidierung" ;

lin consent_05596596_N = mkN "Zustimmung" ;

lin conservation_06171333_N = mkN "Konservierung" ;

lin conspire_00562077_V = mkV "anzetteln" ;

lin sing_01362553_V2 = mkV2 (mkV "singen" ) ;

......

......

}

The first line declares LinkedDictGer to be the concrete representation of the previ-
ously defined abstract representation (note the keyword concrete at the start of the line).
Each entry in this representation is of the following general type:

lin lemma_senseOffset_T = paradigmName "translation" ;

The keyword lin declares each entry to be a linearisation of the corresponding function in
the abstract representation. paradigmName is one of the morphological paradigms defined
for German in the ParadigmsGer module. In the above code this are “mkA”, “mkAdv”,
“mkN”, “mkV” and “mkV2” for the different lexical categories i.e. “adjective”, “adverb”,
“noun”, “intransitive verb”, and “transitive verb”. “translation” in double quotes is the
best possible translation obtained from the Universal WordNet. This translation is passed
to a paradigm as a base word, which then builds a full-form inflection table. These tables
are then used in the linearisation phase of the translation system.

Concrete lexicons for all other languages were developed using the same procedure.
Table 17 gives some statistics about the coverage of these lexicons.

6 Robust Statistical Parsing

As an alternative to the integration between SMT and GF grammars, we also investigated
the possibility to use the Resource Grammars Library for direct translation. Some prelimi-
nary results were known in advance, since Angelov, 2009 [1] gave the first hint that parsing
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Language Number of entries

Abstract 91,516
German 49,439
French 38,261
Finnish 27,673
Swedish 23,862
Hindi 16,654
Bulgarian 12,425

Table 17: Lexicon Coverage Statistics.

with the resource grammars is possible and actually quite efficient. Once the sentence is
parsed, the constructed tree can be linearised back to another language which gives us a
baseline translation service.

Unfortunately, the evaluation done in Ref. [1] was on a synthetic corpus with a very
small lexicon. Furthermore, no attempt has been done to disambiguate between all possible
readings of a sentence. Instead the parser just generated all readings in an arbitrary order.
In the scope of MOLTO, this result was re-evaluated by doing a similar evaluation of the
English grammar on a naturally occurring text from the Penn Treebank [25].

The new experiment is different in a number of ways. First of all the corpus is not
synthetic any more which means that the different syntactic constructions are distributed
with their usual probabilities. Second, this time the grammar was extended with the large
English lexicon that we described in Section 5.1. Finally, the parser is augmented with a
statistical model which is used in two ways. On one side it is used to rank the possible
directions in the search space for the parser and thus it makes it possible to traverse only
parts of the space. On the other side it helps with the disambiguation by picking the
abstract syntax tree with the highest probability for a sentence. Parsing sentences with
such a large and ambiguous grammar is a lot harder problem than the problem of parsing
with the usual GF application grammars. Despite this the experiment confirmed that this
is possible with a reasonable efficiency. Unfortunately we also realized that there is still a
need for improvements before parsing unrestricted text becomes really flawless.

The first problem is that we had to restrict the length of the input sentences to 25 tokens
since otherwise the parser just fails due to the excessive memory consumption. This limit
is still quite low and it is not unusual to have longer sentences in a naturally occurring
text. Unfortunately this is the current limit of the latest statistical parser with the English
grammar. For comparison, we measured that the statistical parser is significantly faster and
with lower memory requirements than the previous non-statistical version. The average
parsing time for both parsers is shown on Figure 5. It is obvious that the new parser is
significantly faster. It also has lower memory requirements. We had to put a limit of 10
tokens for the non-statistical algorithm since after that the memory requirement becomes
too high. On the same corpus the statistical version can cope with lengths up to 25. The
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Figure 5: Average parsing time for the statistical and for the non-statistical GF parser.

evaluation was done on an Intel Core i5 processor with 8Gb RAM.
We also wanted to compare our statistical parser with other existing parsers based

on a similar formalism. Although GF is a high-level programming language, during the
compilation, the source language is reduced to a well-known and simple formalism: Parallel
Multiple Context-Free Grammar (PMCFG, [38]). Rparse [19] is a state-of-the-art training
and parsing system for PMCFG. It is written in Java and developed at the Universities of
Tübingen and Düsseldorf, Germany. Rparse can be used for learning probabilistic PMCFGs
from discontinuous treebanks and for parsing new sentences with the learned grammars.
In our evaluation we used Rparse to extract PMCFG grammars from the discontinuous
German Tiger Treebank [6]. After that we used both Rparse and the GF parser for parsing
new sentences with the extracted grammars. In all cases both parsers returned identical
results, but as it can be seen on Figure 6, our parser significantly outperforms Rparse.
For instance, for sentences of length about 25 tokens our parser becomes about 100 times
faster than Rparse.

Our algorithm has also other interesting properties. Currently GF is the only system
which supports the full power of PMCFG. For instance, Rparse requires that the grammar
is binarised and linear, which means that it only supports linear context-free rewriting
systems (LCFRS) in binary form. This restriction is not necessary in our case. The
grammar learner in Rparse actually first learns a non-binary grammar which after that
has to be binarised, before it can be used for parsing in their system. Since this is not a
problem for the GF parser, we evaluated Rparse only on the binarised grammar, and the
GF parser on both the binarized and the non-binarised grammar. Figure 6 shows that GF
actually performs even better on the non-binary grammar than on the binary grammar.

The details about the parsing algorithm and the evaluation are published in Ref [3]. The
experiment told us that we have a statistical parser which is beyond the state of the art for
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Figure 6: Parsing time for Rparse and the GF parser.

PMCFG. Its efficiency is actually quite satisfactory on the automatically learned German
grammar. The fact that it is still not good enough with the English Resource Grammar is
partly surprising. We still have to analyse this further, but one possible explanation might
be that the English grammar is a lot more complex than the derived German grammar.
For instance the English grammar uses a lot more discontinuities and empty linearisation
rules in order to achieve language independent abstract syntax.

The second problem that we faced in the effort to make robust GF translator was to cope
with the limited coverage of the English grammar. The basic idea behind the strategy for
robustness is a generalization of Stolcke’s idea [40] for introducing wildcard states. While
his approach works for context-free grammars, we extended it to PMCFG. The outcome
is that when the sentence is not fully parseable then the parser just returns the list of
parseable chunks which score best according to the statistical model. From translation
perspective this means that when the sentence is not in the scope of the grammar, then
we can translate only some parts of it.

So far, we have not said much about the training data for our statistical model. The
data is basically the Penn Treebank, but in order to make it useful, we had to transform
it into a set of abstract syntax trees compatible with the English Resource Grammar. We
developed a set of transformation patterns which map fragments of the annotations in
the original treebank into fragments of abstract syntax trees. Whenever the annotation
fragment cannot be represented with the grammar, the transformation simply generates a
placeholder (?) and continues with the rest of the sentence.

An example sentence from the Penn Treebank and its corresponding GF tree are shown
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on Figure 7. Here we can see that a lot has been recovered but there are also three cases
where the mapping has failed. First of all, it is not possible to construct the phrase:

Pierre Vinken, 61 years old, will join the board as a nonexecutive

director, Nov. 29

with the resource grammar for two reasons: the grammar have no constructions for building
an adjectival phrase like “61 years old” and there is no way to attach an adjectival phrases
to a proper name. Furthermore, the grammar does not support time adverbials like “Nov.
29” unless they are introduced with a preposition. Finally, the adjective “nonexecutive” is
missing in the lexicon, so we get yet another placeholder.

We looked at the generated trees and whenever a grammar function has been recovered
we always found that it is the correct one. However, there were situations where none of
the patterns matched and then we got a placeholder, although the manual examination
showed that the sentence is actually expressible in the grammar. Some of the failures
were also due to errors and inconsistencies in the original annotations in the treebank but
there are also cases where the patterns are just not comprehensive enough. Since writing
exhaustive transformation patterns would be very difficult, we just manually completed
some of those trees. Currently there are 7,144 sentences for which we are sure that they
are as complete as possible with respect to the current coverage of the grammar. This
number also includes 3,243 completely converted sentences.

Although the conversion is not complete, the automatic mapping gave us a way to
estimate the coverage of the grammar on the corpus. However, the statistics should be
taken only as estimations because they only reflect the current state of the corpus. We
expect that the numbers for the complete conversion would be higher.

There are many ways to compute the coverage of the grammar. The simplest one is
to calculate the percentage of nodes in the abstract trees that are filled in with function
symbols instead of placeholders. A plain counting shows that in average 94.80% of the
nodes are filled in with functions, and the remaining 5.20% are placeholders. However, this
percentages include both placeholders which are due to missing syntactic constructions and
those that are due to unknown words. It is a good idea to separate them since in any kind
of processing, unknown words are easier to handle than unknown syntax. If we pretend
that the placeholders on the leaves of the trees are actually known words we get the much
higher coverage of 96.77%.

Another way to evaluate the coverage is to look at how many sentences were fully
converted and how many have only one, two, three or more placeholders. As a whole, out
of 49,208 sentences, 3,243 sentences (6.58%) were fully converted to abstract trees. Again,
if we exclude the unknown words, we get much higher numbers - 5,830 sentences or 11.85%.
The overall distribution of the number of sentences with a given number of placeholders is
shown on Figure 8. It can be seen that the majority of sentences is clustered in the region
from one to four placeholders per sentence. More concretely the expected average number
is 3.34 with a standard deviation of 2.25. If we ignore the unknown words we get a sharper
curve which gives an expected value of 2.07 placeholders with a deviation of 1.46.
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Figure 7: An example Penn Treebank tree (above) and the corresponding abstract tree in
the English Resource Grammar (below)

Although, the plain percentage of recovered function names is quite high, the percentage
of sentences that are actually parseable is quite low. This shows that grammar can explain
most of the syntactic constructions in the sentence, but still given the usual distribution of
sentence lengths in the Penn Treebank, there is still a high chance to encounter an unknown
construction in most of the sentences. In general the chance to find new constructions is
higher in a longer sentence. This points to an alternative measure for the coverage. We
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Figure 8: The distribution of the number of sentences with a given number of placeholders.

can compute the ratio between the number of tokens in a sentence and the number of
placeholders. We found that in average it can be expected to encounter a new placeholder
once in every 8.78 tokens, or if we ignore the unknown words in every 12.86 tokens. This
correlates well with the observation that the average length of the fully converted sentences
is 11.43 tokens although there are sentences of length up to 67 tokens. In general the
grammar works better on shorter sentences. The same was also confirmed in the SMT+GF
experiments where the coverage was improved by parsing chunks instead of full sentences
(Section 4).

The new statistical parser in GF in combination with the Resource Grammars Library
and the large multilingual lexicons, opened the possibility to use GF as a standalone
translation system which may or may not be complemented with SMT. However, we still
think that using GF as the primary translation engine still has not reached its full potential.
As we will see in the following section our translation scores are still pretty low.

6.1 Robust parsing performance

With the help of the new statistical parser in GF, we built a baseline translation system
where the input sentence is parsed from English to an abstract syntax tree and after that
the tree is directly linearised to a target language. To evaluate different properties of the
system we have conducted two different rounds of the experiments. Details are given in
the following subsections.
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Languages System BLEU WER PER TER

English-Hindi Google 30.96 55.85 42.96 52.98
GF 34.30 60.62 50.84 59.19

English-Finish Google 29.11 51.07 46.79 48.40
GF 34.93 45.99 39.04 45.99

English-German Google 62.70 24.93 19.10 22.81
GF 50.13 31.03 29.71 31.03

Table 18: Evaluation results with pre-parsed sentences.

6.1.1 Round 1

In the first round, we took a set of pre-parsed sentences (i.e. parse trees) and linearised
them to Hindi, German, and Finnish by using the resource grammar for the corresponding
language. Since we did not use the GF parser (neither the regular GF parser, nor the
robust one) in this round, the purpose it to show that once we have a correctly parsed and
disambiguated trees, our base-line translation system, with some pre-supposed limitations,
can be competitive with state-of-the-art engines such as Google Translate. We evaluated
our translations against the gold-standard translations produced by correcting the auto-
matic translations obtained from either Google Translate or GF. In this way we prepared a
test corpus which contains 100 sentences, manually corrected by native speakers. To avoid
any biasing, 50 of those sentences were initially produced by Google Translate and 50 by
GF. Table 18 shows the BLEU, WER, PER, and TER evaluation scores for the different
language pairs on the test corpus. WER, PER, and TER all are error rates, so small values
are better, while BLEU is a performance score, so higher value is better. From the table
we can see that our baseline translation system got consistently better BLEU scores than
Google. However, Google has slightly better scores for the error rates on the English-Hindi
language pair. Still, the comparison with Google is not completely fair, because we are
evaluating the systems on in-grammar sentences.

6.1.2 Round 2

In this round, we took a set of random sentences from the Penn Treebank data, we parsed
them by using the statistical parser and then linearized them to German, and Hindi. Table
19 shows the evaluation results. We can see that our translation system performed better
than Google for German, but for Hindi the Google scores are better. One reason could be
already known issues with the Hindi resource grammar. For this round we only considered
fully parsed sentences and left the partially-parsed sentences out of the evaluation test.
This is why, the comparison with Google is still not completely fair.
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Languages System BLEU WER PER TER

English-Hindi Google 27.01 60.31 44.07 56.96
GF 21.72 70.52 61.05 65.98

English-German Google 41.55 41.76 38.46 38.74
GF 45.64 36.82 32.14 36.81

Table 19: Evaluation results with statistical parsing.

7 Hybrid Systems

As it has been seen, the grammar-based translator already makes use of the SMT system
trained on patents to translate the GF English lexicon. Although it already uses of hybridi-
sation techniques, we consider this first approximation as a baseline for the more advanced
hybrid systems. The reason is that even the vocabulary is disambiguated towards the
biomedical domain thanks to the hybridisation, still there are non-parseable chunks with
unknown vocabulary in the lexicon that cannot be translated using the grammar. That
is to say, the system is not able to translate robustly a whole test set. The percentage of
sentences that can be completely translated from beginning to end by GF is 6.9%.

In the description of work three baseline systems were proposed: the individual SMT
system, the individual GF system, and a näıve cascade combination where a sentence is
translated by GF whenever is possible and by SMT otherwise. After the development of
the systems we have defined two different baseline systems: the SMT system and the first
hybrid GF translator. The latter is already a hybrid baseline and the näıve combination
of both does not provide new information since more than 93% of the sentences would be
translated by SMT.

To gain robustness in the final system the output of the GF translator is used as a
priori information for a higher level SMT system. An SMT system trained in the same
way as the SMT baseline is fed with these GF phrases and it is the way the phrases interact
with the SMT ones what defines two families of hybrid models:

Hard Integration (HI). Phrases with GF translation are forced to be translated this
way. The top decoder can reorder the chunks and translates the untranslated chunks, but
there is no interaction between GF and pure SMT phrases. From all the possible SMT
phrases that can fill the holes left by GF, the language model chooses those that make the
output more fluent, understood as the model of fluency given by the training corpus.

Soft Integration (SI). Phrases with GF translation are included in the translation
table with a certain probability so that the phrases coming from the two systems interact.
Probabilities in the SMT system are estimated from frequency counts in the usual way;
the probabilities in the GF system are assigned to divide phrases in two or three groups
according to the confidence on the translation as explained in Section 4.3. The GF score is
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divided homogeneously among the four lexical features of the translation table. So, a score
of 4 means a score of 1 for each feature (generative and discriminative lexical translation
probabilities lex(f |e) and lex(e|f), and generative and discriminative translation models
P (f |e) and P (e|f)). This value does not imply a sure translation because other features
such as language model, penalties and reordering also interact, but it is given a high value
so that SMT phrases at most can tie. In the same way, a score of 1 is converted into a 0.25
for each feature, and the most unsafe translations, those with score 0.2, have a minimum
contribution of 0.05 per feature. This small value makes them very difficult to be chosen
but still complement the translation in case there is not better choice coming from the
SMT.

Under this perspective, the GF translator can be seen as a Soft Integration model led by
a GF translator instead of being led by the SMT. The patents grammar parses the source
sentence and complements its translations by the ones given by the SMT translation of
the lexicon. These three integrations are evaluated on the patents test set both automatic
and manually.

7.1 Integration led by SMT

We analyse here the hybridisation between the GF translators from Section 4 and an SMT
system. With the five different grammars, the two kinds of integration, and the degree of
interaction one can define 40 hybrid systems. By the degree of interaction we refer to the
relevance of GF in the top SMT translator: GF can be used only at decoding time or also
for tuning the parameters. So, in this case, the weights of all the SMT components (Eq. 1)
are adjusted following the same methodology applied in test time. The development for the
hard (soft) integration system is done with a hard (soft) integration of the GF translations
of the development set with the SMT translation table. The latter case is indicated by dev
in the system’s names, hard and soft integration are marked as HI and SI respectively,
and the nomenclature for the GF grammar is that of Table 10.

Table 29 in Appendix A summarises the nature of these 40 systems. The names defined
in this table are used throughout the document. In order to ease the reading, the complete
automatic evaluation of these engines is included as Appendix A. This section shows the
analysis for the most representative systems and for those with the best performance.

In general, the best results are obtained with the static lexicon, a soft integration and
with GF used in development. The other options are less relevant to the final results,
although is some cases differences are not significant.

As expected, the largest difference between the soft and hard integration is the number
of GF phrases in the final translation. For French, the MAREC test set parsed with Genia

is divided in 10,306 grammatical chunks16 (or 10,456 for the unsafe version). As it has been
seen, only 4,255 chunks can be parsed by Genia with the static lexicon, a 41% of the total.

16SMT phrases can be shorter or longer than grammatical chunks.
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GF SMT BOTH Total

HIdev-Sts 1,486 (34.92%) 0 (0.00%) 2,769 (65.08%) 4,255
HIdev-SaBs 3,228 (52.65%) 1 (0.02%) 2,902 (47.33%) 6,131
HIdev-SaEs 3,242 (50.57%) 1 (0.02%) 3,168 (49.42%) 6,411
HIdev-Stm 1,435 (33.73%) 0 (0.00%) 2,820 (66.27%) 4,255
HIdev-SaEm 2,683 (41.85%) 1 (0.02%) 3,727 (58.13%) 6,411

SIdev-Sts 250 (5.88%) 1,897 (44.58%) 2,108 (49.54%) 4,255
SIdev-SaBs 323 (5.27%) 3,656 (59.63%) 2,152 (35.10%) 6,131
SIdev-SaEs 354 (5.52%) 3,737 (58.29%) 2,320 (36.19%) 6,411
SIdev-Stm 230 (5.41%) 1,936 (45.50%) 2,089 (49.10%) 4,255
SIdev-SaEm 438 (6.83%) 3,269 (50.99%) 2,704 (42.18%) 6,411

Table 20: Origin system of the chunks translated by several hybrid systems which have
both a GF and an SMT translation option. The remaining chunks and the punctuation
tokens can only be translated by the SMT system.

GF SMT BOTH Total

SIdev-Stm

VP 66 (13.50%) 222 (45.40%) 201 (41.10%) 489
NP 85 (4.85%) 776 (44.32%) 890 (50.83%) 1,751
AdjP 0 (0.00%) 27 (55.10%) 22 (44.90%) 49
AdvP 79 (5.41%) 791 (54.18%) 590 (40.41%) 1,460
RelP 0 (0.00%) 120 (23.72%) 386 (76.28%) 506

Total 230 (5.41%) 1,936 (45.50%) 2,089 (49.10%) 4,255

SIdev-SaEm

VP 94 (10.77%) 495 (56.70%) 284 (32.53%) 873
NP 204 (7.26%) 1,332 (47.39%) 1,275 (45.36%) 2,811
AdjP 2 (2.30%) 31 (35.63%) 54 (62.07%) 87
AdvP 138 (6.77%) 1,248 (61.27%) 651 (31.96%) 2,037
RelP 0 (0.00%) 163 (27.03%) 440 (72.97%) 603

Total 438 (6.83%) 3,269 (50.99%) 2,704 (42.18%) 6,411

Table 21: As in Table 20 but results are broken down according to the type of chunk. The
above figures correspond to the SIdev-Stm hybrid system; below, correspond to SIdev-
SaEm.

This number grows up to around 60% for dynamic lexicons. The hard integration system
uses almost all of them in the final translation. Still, the chunks that are not covered by
GF are translated with SMT phrases and, besides, some of the GF translations can also be
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built from SMT phrases. So, at the end, only around 15% of the grammatical chunks are
translated thanks to the GF grammar with static lexicons and a 30% with the dynamic
ones. An additional 30% of chunks which already have a SMT translation are collapsed
towards the GF translation.

Numbers are much lower for the soft integration. Table 20 shows the comparison for a
representative subset of systems. In this case between 5 − 7% of the chunks are uniquely
translated by GF. The language model which, together with the word penalty, has the
highest weight in the final score of a translation, is favouring translations with structures
similar to those seen in the training data. So, when the final decoding has freedom to
choose, it reproduces the most frequent structures. In some cases that simply favours
a correct SMT translation in front of another correct GF translation; in some others, a
correct translation is lost because the language model is not seeing at large distances.

According to the type of chunk, verb phrases (VP) are the ones with a higher percentage
of GF translations in the final output. However, VPs only represent between 10− 15% of
the total. One can read the distribution per type of chunk in Table 21 for two of the hybrids:
SIdev-Stm and SIdev-SaEm. Noun phrases (NP) and adverbial and prepositional phrases
(AdvP) are more abundant in the test set: structures such as “according to” or “of said

combination/compound...” are widely repeated through patents. This high frequency
also seen in the SMT training set makes that half of the times the translation chosen is that
from the SMT system and, in more than 95% of the cases the final translation is already
within the original SMT translation table (SIdev-Stm). GF can be helpful in translating
chunks for which agreement is crucial (VP and specially RelP and AdjP). As also seen in
Table 21, RelPs and AdjPs are not translated by GF. However, in 45% and 76% of the
chunks respectively the translation is both given by GF and SMT, and GF is collapsing
the solution towards the one that does a correct agreement. That is, the translation of the
pure SMT system is modified because of the reinforcement of another option by GF. The
most evident example is agreement in gender and number. Contrary to English, French
adjectives and nouns agree in gender and number and relative pronouns agree with their
relative. This is taken into account by construction in GF so that mistaken SMT trans-
lations such as “le médicament séparée” is correctly translated as “le médicament séparé”
(the separate medicament) or “composition pharmaceutique selon la revendication 1,
dans lequel” is correctly translated as “composition pharmaceutique selon la revendication
1, dans lequelle” (the pharmaceutical composition of claim 1, wherein).

The small percentage of chunks that GF is modifying with respect to SMT translations
makes a large improvement in the automatic evaluation of the translation difficult. Table 22
shows the selection of lexical and syntactic metrics applied on MAREC test set and Table 23
for the EPOMT test set. The first horizontal block corresponds to the baseline systems, the
second one displays the results for the hybrid systems with the best performance, and the
last block shows two external translators to compare our system with the state-of-the-art.

For all the metrics the SMT system beats the GF one in a significant way. This is
mainly due to the coverage, SMT is able to translate the whole sentence which is not the
case of GF. However, GF is able to deal with some grammatical issues that cannot be
recovered statistically as seen before.
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

GF-SaEs 66.62 51.14 64.47 21.69 5.17 18.87 35.36 26.20 26.17
SMT 27.16 18.00 25.57 62.40 9.95 44.99 75.71 72.94 84.97

SIdev-Sts 26.90 17.71 25.33 62.82 10.01 45.31 76.11 73.63 85.55
SIdev-Stm 26.81 17.69 25.23 63.05 10.03 45.57 76.21 73.49 85.73

Bing 39.78 28.14 37.70 45.73 8.64 32.67 61.55 58.50 64.68
Google 32.46 20.82 30.54 57.86 9.70 40.28 71.56 71.40 78.87

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

GF-SaEs 25.92 26.83 21.06 25.21 1.97 46.00
SMT 63.71 65.91 50.92 47.54 3.60 99.70

SIdev-Sts 64.05 66.36 50.25 47.62 3.59 99.70
SIdev-Stm 63.61 66.21 49.97 47.55 3.59 99.35

Bing 49.65 51.93 36.95 40.34 3.27 80.79
Google 60.17 62.56 46.75 45.48 3.46 94.33

Table 22: Comparative table for the English-to-French language pair for the MAREC test
set.

Notice that the table of best systems does not include any of the hard integration models
(see Appendix A for the results). As explained, the hard integration of the translations
does not allow them to interact. GF translations are always used and the statistical
decoder reorders them and completes the translation with its own phrase table. Results
in this case are below those of the SMT system because the system is being forced to
use the high quality translations together with translations of elements not considered.
Just to give an example, GF would highly benefit from incorporating a grammar to deal
with compounds and numbers. Currently these elements typical of the domain are not
specifically approached. Including multiple GF translations enhances the performance
but, still, the pure SMT is better. A similar thing happens when considering the extended
base lexicon for the runtime versions instead of the base one: the effects are visible for
hard integration but are lost for soft integrations.

Another trend one can observe in the Appendix is the fact that using GF for tuning
the weights of the final SMT decoder improves the performance. Improvements are not
huge, but consistent through all metrics, test sets and language pairs.

The best translators are hybrids with a soft integration of the systems, the one giv-
ing more freedom to the combination. The combination of all the phrases improves the
translations according to all the lexical metrics considered for the MAREC test set. Only
the syntactic metrics CP-STM-9 and SP-pNIST-5 prefer the statistical system in front of
the hybrids. The best system, SIdev-Stm, is above the SMT in 0.65 points of BLEU and
0.50 of METEOR for example. The mean of metrics, ULC, separates the hybrid from the
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

GF-SaEs 61.92 50.35 60.48 25.36 5.81 17.42 36.26 24.97 28.23
SMT 30.08 19.21 28.35 61.08 9.94 40.75 72.27 69.90 82.59

SIdev-Sts 29.95 19.26 28.51 61.28 9.99 40.94 72.43 70.66 82.91
SIdev-Stm 30.14 19.26 28.67 61.15 9.96 40.91 72.25 70.48 82.69

Bing 42.44 30.74 40.01 44.21 8.59 28.02 57.75 57.44 61.16
Google 30.26 20.76 28.50 61.43 10.28 38.44 71.15 70.61 81.85

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

GF-SaEs 25.94 28.04 22.46 36.29 4.60 46.34
SMT 62.90 66.55 52.95 73.64 7.99 99.58

SIdev-Sts 62.91 67.21 52.10 73.90 8.02 99.61
SIdev-Stm 62.96 67.04 52.23 73.87 8.00 99.56

Bing 48.54 52.11 37.43 60.96 7.02 79.01
Google 60.51 65.11 49.74 73.37 8.04 97.24

Table 23: Comparative table for the English-to-French language pair for the EPOMT test
set.

SMT in 0.76 points for the lexical metrics but shows comparable values for the syntactic
metrics. The state-of-the-art systems, Google and Bing, are below these devoted engines.

For the EPOMT test sets results are not so consistent. A hybrid system, SIdev-Sts, is
still the best according to the combination of metrics, but the variation is wider. BLEU
and NIST (lexical and syntactic) prefer Google’s translations, although at the end ULC
ranks the system after all the hybrids and even after the SMT. In this case, the SMT and
the hybrids are closer, and the evaluation is better for the SMT with two metrics, PER
and TER.

As a final remark it is seen that the best hybrids are built with a static lexicon. A static
lexicon has less but more probable translations. From the three levels of confidence there
are no chunks with a low score. Besides, the number of chunks with an intermediate score
is severely reduced by more than a half, almost all the cut in the number of chunks comes
from here because the system keeps the most sure translations. The distinction between
the safe and unsafe runtime versions only affect about a 6% of the translated chunks, so
differences on the final translations due to this change are minimum.

The behaviour for the English-to-German translator is similar, but with one main
difference, the size of the static lexicon. As a result, the family of models with the static
lexicon only have 2,264 chunks translated by GF for the MAREC test set and 2,242 for the
EPOMT one, this is half of the number that one has for French and the effect on the final
performance is visible.

At the end, around a 20% of the chunks are uniquely translated by GF in the final
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GF SMT BOTH Total

HIdev-Sts 518 (22.88%) 0 (0.00%) 1,746 (77.12%) 2,264
HIdev-SaBs 2,253 (37.51%) 1 (0.02%) 3,753 (62.48%) 6,007
HIdev-SaEs 2,742 (44.88%) 1 (0.02%) 3,366 (55.10%) 6,109
HIdev-Stm 483 (21.33%) 0 (0.00%) 1,781 (78.67%) 2,264
HIdev-SaEm 2,355 (38.55%) 1 (0.02%) 3,753 (61.43%) 6,109

SIdev-Sts 28 (1.24%) 1,171 (51.72%) 1,065 (47.04%) 2,264
SIdev-SaBs 253 (4.21%) 3,266 (54.37%) 2,488 (41.41%) 6,007
SIdev-SaEs 169 (2.77%) 3,686 (60.34%) 2,254 (36.90%) 6,109
SIdev-Stm 37 (1.63%) 1,015 (44.83%) 1,212 (53.53%) 2,264
SIdev-SaEm 229 (3.75%) 3,421 (56.00%) 2,459 (40.25%) 6,109

Table 24: As Table 20 for the English-to-German language pair.

GF SMT BOTH Total

SIdev-Stm

VP 3 (1.61%) 133 (71.50%) 50 (26.88%) 186
NP 11 (1.10%) 500 (49.95%) 490 (48.95%) 1,001
AdjP 1 (4.76%) 4 (19.05%) 16 (76.19%) 21
AdvP 22 (4.00%) 313 (56.91%) 215 (39.09%) 550
RelP 0 (0.00%) 65 (12.85%) 441 (87.15%) 506

Total 37 (1.63%) 1,015 (44.83%) 1,212 (53.53%) 2,264

SIdev-SaEm

VP 16 (2.16%) 653 (88.01%) 73 (9.84%) 742
NP 102 (3.65%) 1,291 (46.17%) 1,403 (50.18%) 2,796
AdjP 4 (4.12%) 58 (59.79%) 35 (36.08%) 97
AdvP 107 (5.72%) 1,342 (71.73%) 422 (22.55%) 1,871
RelP 0 (0.00%) 77 (12.77%) 526 (87.23%) 603

Total 229 (3.75%) 3,421 (56.00%) 2,459 (40.25%) 6,109

Table 25: As Table 21 for the English-to-German language pair.

translation for the hard integration and less than a 2% with the soft integration. These
percentages are shown in Table 24 for the MAREC test set. Another noticeable point is
that for the runtime versions there is also a decay in the number of chunk translations
that are chosen from GF. For a hard integration this number is always below 45% (to be
compared with 53% for French) and for a soft integration below 4.5% (7% for French).
The best grammar, GF-SaBs, is the one with the larger contribution into the hybrid with
a 4.2%, which, still is lower than the smallest GF contribution for French. However, in this
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

GF-SaBs 73.69 62.52 72.25 20.74 4.72 18.49 32.69 20.42 26.09
SMT 30.93 22.82 29.33 57.59 9.40 42.98 67.84 63.14 84.81

SIdev-Sts 31.06 22.95 29.45 57.70 9.44 43.14 67.73 63.22 84.86
SIdev-Stm 31.59 22.97 29.97 57.35 9.41 42.82 67.43 62.91 84.35
SIdev-SaEs 30.80 23.39 29.24 57.40 9.48 43.38 67.31 63.47 84.88

Bing 53.94 40.49 51.71 36.30 6.95 27.95 51.27 42.74 54.26
Google 40.20 26.99 38.29 53.43 9.01 39.89 63.34 62.35 77.56

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

GF-SaBs 20.02 19.04 12.15 19.04 3.82 40.63
SMT 52.89 51.62 32.99 51.62 6.95 99.84

SIdev-Sts 52.98 50.83 32.62 50.83 6.89 98.85
SIdev-Stm 52.81 50.71 32.39 50.71 6.89 98.54
SIdev-SaEs 53.04 51.13 33.16 51.13 6.95 99.60

Bing 35.77 34.87 20.50 27.30 5.47 65.66
Google 49.88 47.23 29.71 47.23 6.23 91.24

Table 26: Comparative table for the English-to-German language pair for the MAREC test
set.

case, there is an increment on the number of chunks whose translation appears in both
systems.

Regarding the type of chunk, NPs and AdvPs are the more numerous in the output
and also the ones with a higher percentage of GF translations, but AdvP and VP are
mostly translated by SMT phrases. RelPs are never translated by GF alone, because the
number of translation options is small and they always appear in the translation table. For
example “which” can be translated as “der”, “die” or “das”, GF always does the correct
agreement when gets a translation and so, it helps to choose between the three options
from the translation table.

The low presence of GF chunks in the final translation explains the results of the
automatic evaluation. Tables 26 and 27 show the scores for the set of lexical and syntactic
metrics for the MAREC and EPOMT test sets respectively. The SMT and the best hybrid
are close in scores. SIdev-StBs and also SIdev-SaEs are better according to most lexical
metrics, whereas the SMT system is preferred by 4 out of the 6 the syntactic metrics. This
is true for the in-domain set; for the EPOMT one, the best hybrid system is always better
than the SMT. However, in this case, Google obtains a higher performance according to
NIST, METEOR and ROUGE.

Some general comments already mentioned in the English-to-French translation apply
also for German. That is, a soft integration where GF has been used both in development
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

GF-SaBs 70.59 58.95 69.68 29.69 5.63 16.52 33.69 18.70 29.12
SMT 35.32 25.59 33.47 58.46 9.50 37.86 63.44 61.12 81.04

SIdev-Sts 34.76 25.56 32.92 58.93 9.59 38.33 63.74 61.31 81.72
SIdev-Stm 35.17 25.28 33.22 58.55 9.56 37.88 63.59 61.56 81.40
SIdev-SaEs 34.86 26.22 32.94 58.13 9.60 38.31 62.98 61.44 81.27

Bing 53.24 38.46 50.78 42.34 7.62 24.96 50.03 42.40 55.74
Google 38.06 25.71 35.87 57.63 9.77 37.35 63.95 64.01 80.78

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

GF-SaBs 18.98 18.57 12.44 18.57 3.81 38.76
SMT 52.07 50.15 32.75 68.17 6.64 98.89

SIdev-Sts 52.32 50.46 33.16 68.76 6.75 99.86
SIdev-Stm 52.04 49.92 32.15 68.21 6.69 98.58
SIdev-SaEs 52.13 50.06 32.69 68.23 6.75 99.19

Bing 35.85 34.65 21.06 60.16 5.45 73.68
Google 52.68 49.39 31.75 67.12 6.38 97.14

Table 27: Comparative table for the English-to-German language pair for the EPOMT test
set.

and test is the best configuration for the hybrid system. Extending the base lexicon for
the runtime versions is useful for a hard integration but not for the soft one, and the same
argument applies for multiple GF translations. Contrary to French, using a static lexicon
is not always the best solution due to the limited amount of translation it gives. In our
working test set, MAREC, the SIdev-SaEs system results to be better at syntactic level
and for some representative lexical metrics such as TER and NIST. However, BLEU and
METEOR still favour the static lexicon.

In summary, the hybrid systems presented in this section show improvements over the
baseline which are moderate because of two reasons. First, SMT translations are already
good for a start. And second, the amount of issues that GF handles are limited to be
reflected on automatic metrics. The manual evaluation that is being carried out in WP9
will help to elucidate the strengths and weaknesses of the combination. For the moment,
enlarging the static lexicons, specially for German, and extending the number of structures
parsed by the grammar seem two crucial points to improve the architecture. As explained
in Section 4.4, the system would also benefit from dealing with long distance agreement.
In order to solve this issues and in parallel, a different architecture is being developed with
the idea that a robust parsing of the input sentence and the long distance reorder and
agreement come by construction.
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

GF-Robust 82.09 64.70 81.25 7.69 2.51 19.76 23.71 16.21 42.33

GF-Sts 81.12 74.43 80.60 10.69 2.59 18.77 23.01 9.00 38.05
GF-SaBs 70.34 61.00 69.24 19.63 3.78 26.35 35.55 20.73 68.39
GF-SaEs 72.23 62.75 71.84 17.02 3.54 24.72 33.33 19.06 62.39
GF-UnBs 70.47 61.19 69.37 19.33 3.76 26.14 35.32 20.60 67.79
GF-UnEs 72.16 62.75 71.77 17.17 3.55 24.82 33.41 19.06 62.61

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

GF-Robust 19.32 14.20 12.75 14.20 2.49 73.22

GF-Sts 15.03 12.76 10.08 12.76 2.35 62.82
GF-SaBs 24.00 21.07 15.76 21.07 3.40 99.19
GF-SaEs 23.13 20.98 16.16 20.98 3.44 99.01
GF-UnBs 23.85 20.97 15.66 20.97 3.37 98.56
GF-UnEs 23.14 21.01 16.25 21.01 3.44 99.17

Table 28: Comparative table between the hybrid models based on GF for a subset of
sentences of the MAREC test set.

7.2 Integration led by GF

GF has available a Resource Grammar Library and the general English lexicon which could
serve as a general translator. But for this, one needs a robust parser to be able to deal with
unknown structures not covered by the grammar and the lexicon. Such a parser has been
described in Section 6. The probabilistic parser has been trained on the Penn Treebank
and, in order to be applied to patents, also the lexicons developed as explained in Section 5
are used.

Including the extra lexicons does not solve one of the main issues with the current
robust parser, that is, for efficiency issues, the length of the sentence to translate is limited
to 25 tokens. Besides, the domain of the Penn Treebank is far from the biomedical one.
So, at this point, we do not expect the robust statistical parsing to perform better than
the standard GF parser applied on an in-domain GF grammar.

As a first experiment, we translate the MAREC test. The experiment has been con-
ducted for the English-to-German translation. The whole test set cannot be used with
the robust parser, only 537 out of the 1008 fragments fulfil the length restriction. These
candidate sentences are then cleaned to fit the parser format. For instance, numbers are
tokenised, punctuation removed and tags indicating the position of an image or a figure in
the patent are also deleted. With this cleaning, the original sentence:

The use of claim 23 , wherein the amount of said composition is from 100

mg to 800 mg of ibuprofen .

would be converted into
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the use of claim 2 3 wherein the amount of said composition is from 1 0 0

mg to 8 0 0 mg of ibuprofen

In the hybrid approach led by SMT, tokens such as punctuation and numbers are passed
to the final SMT decoder. Here, since it is already known that GF is not dealing with them
and they are preventing the parsing, the conflictive tokens are removed from the beginning.

Although the remaining 537 fragments can be parsed, not all of them can be properly
linearised. This can be due to both structures not covered by the grammar and missing
vocabulary. In this particular example, 98 sentences are finally fully linearised, a 20%
of the candidate sentences. Notice that for Penn Treebank sentences, the percentage of
success is a 7%. The repetitive structures of patents and the additional dictionary are
probably the clue to the increment.

We evaluate this subset of sentences with the common set of metrics available for
German (Table 28). According to all metrics, the standard GF translations with the
lexicon built on runtime are better than the GF with robust parsing. Translations with
robust parsing have a similar quality as those obtained with a static lexicon and the
standard GF parser using the patents grammar. In the latter case, from the 614 chunks
that Genia detects in the 98 sentences, 203 can be translated by GF and 411 are left in
English in order to be evaluated as they are. 177 tokens correspond to punctuation and
are not included in the chunks. So, using the same lexicons, the robust parsing is able
to parse the full sentence but the necessary cleaning has damaged the final translation.
The standard GF cannot translate all the terms of the sentence but keeps tokens such as
numbers and punctuation that help to improve the performance. This is evident from the
fact that metrics based on n-gram matching such as BLEU and NIST penalise the robust
parser, whereas syntactic metrics for example favour this system.

8 Synergies and Relations

Some of the technology and resources developed in WP5 have been used in WP7 as the
main case study. In fact, WP5 and WP7 share different corpora and tools. The corpora
provided by EPO (see Section 2.2.2) is used to populate the patents retrieval system. The
corpus is preprocessed using the in-house tokeniser developed for the patents domain. As
a difference, WP7 deals with the original XML documents which must be preprocessed
in the same way done to train the translation systems. This way the translation engines
introduced in Sections 3, 4 and 7 can be integrated into the prototype. So, WP7 is in
charge of extracting the raw text to translate from the original XML documents, pre-
process it with our in-house tools maintaining the original mark-up, and post-process the
translations to build the machine translated XML documents. The result of this pipeline
is an XML document with the original text and the translations. The Patent MT and
Retrieval Prototype can be accessed on-line at http://molto-patents.ontotext.com.
See D7.3 Patent MT and Retrieval. Final Report [26] for a more detailed description.

This prototype has been build as a use case within the project, but patent translation
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is a hot topic nowadays and there exist several devoted projects, systems, applications and
services. Google Patents17 is a retrieval system for patents coming from the United States
Patent and Trademark Office (USPTO). Patents issued in the United States are public
domain documents, and images of the entire database of U.S. patents are readily available
on-line via the USPTO website. Through this service, users can search 8 million patents
and 3 million patent applications issued in the 1790s through the present, all of them in
English.

Later, in February 2012 and in collaboration with EPO, Google Inc. launched Patent
Translate. Patent Translate is an update to the Google Translate system that incorpo-
rates the EPO’s parallel patent texts and allows translation between English and French,
German, Spanish, Italian, Portuguese and Swedish. The translator is part of the EPO’s
Espacenet service18 which provides free access to 70 million worldwide patent document. It
can also be accessed through the European publication server19. The EPO plans to extend
the service by the end of 2014 to permit users to translate from and to all 28 languages
of the EPO members states, as well as provide for the translation of Chinese, Japanese,
Korean, and Russian languages.

With these two collaborations, Google has added millions of patents to their training
data, and the impact of this data on the quality of their translation system is significant.
If one compares the tables given in this deliverable with the ones in D5.2, one can see
the large improvement of their system from February 2011 to May 2012. Translations
involving German have improved between 8 and 9 points of BLEU for example, whereas
for the English-French translation the improvement is of 5 points.

A different approach is that of the Patent Language Translations Online (PLuTO)
project. PLuTO is a dedicated project to patent translation, its MT framework is a web
service whereby users can request translations. The translation engine uses the MaTrEx
(Machine Translation Using Examples) system developed at DCU [4]. It is a hybrid data-
driven system built following established design patterns, with an extensible framework
allowing for the interchange of novel or previously developed modules as it is defined in
[44]. The project is dealing with English, French, German, Spanish, Portuguese, Chinese
and Japanese. For the languages we are interested in, they have at their disposal the
MAREC corpus and EPO’s translation memories (TM).

The data available to both Google and PLuTO makes the comparison with us difficult.
We cannot use our MAREC’s test set because it is included in PLuTO’s training set.
EPO’s official data might be included in Google’s corpus and reflected in the TM available
to PLuTO. Since is difficult to control specially Google’s data, we have also translated
American patents with the mentioned systems. American patents are not translated to
European languages, so there is no parallel corpus including these data. Monolingual data
exist though, and it can be used for language modelling for example. MOLTO is not using

17https://www.google.com/?tbm=pts
18http://www.epo.org/searching/free/espacenet.html
19https://data.epo.org/publication-server
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this data, and according to their publications neither does PLuTO. However, they might
be part of Google’s corpus. Still, we consider a test set build with these patents a fair
comparison within translators.

The test set has been build from patents available trough Google Patents. We have
retrieved 27 patents with IPC A61P and obtained the claims from the General Information
section. With this, the UPSTO test set contains 1,000 fragments of English claims.

The fact that American patents are not translated implies that there are not references
for the translations, so they cannot be evaluated with automatic metrics and we have to
apply a human evaluation. This work is being carried out within WP9, Evaluation and
will be reported in the D9.2 MOLTO evaluation and assessment report.

9 Summary

The work of WP5 has been devoted to improve the coverage and robustness within MOLTO.
The main goal has been to explore the possibilities within the project framework to widen
the GF coverage and robustness so that it approaches to translate open-domain text. Also
the opposite approach has been investigated, that is, improving the translation of a general
purpose engine (an SMT) with high quality translations given by GF.

The tasks related to widening GF have been focused on building general purpose lex-
icons. A more robust GF can be achieved by the use of the robust statistical parser that
will allow to translate free text or, at least, the parts covered by the grammars without
being affected by unknown elements. On the other hand, the development of a hybrid
system between GF and SMT has been restricted to translate patents and has implied the
construction of new resources on the domain and conceiving techniques to integrate both
technologies.

Regarding the development of different types of general lexicons it has been used GF’s
core idea of common abstract syntax and multiple concrete syntaxes to produce multi-
lingual morphological lexicons. The abstract syntax is based on data from the Princeton
WordNet and the Oxford Advanced Learner’s dictionary. The concrete syntaxes are pro-
duced using data from already existing lexical resources (i.e. Bilingual dictionaries and
Universal WordNet), and GF’s morphological smart paradigms. Because words can have
multiple senses, and it is often very hard to find one-to-one word mappings between lan-
guages, two different types of multi-lingual lexicons have been developed: Uni-Sense and
Multi-Sense. In a uni-sense lexicon each source word is restricted to represent one partic-
ular sense of the word, and hence it becomes easier to map it to one particular word in
the target language. These type of lexicons are useful for building domain specific NLP
applications. A multi-sense lexicon, on the other hand, is a more comprehensive lexicon
and contains multiple senses of words and their translations to other languages. This type
of lexicons can be used for open-domain tasks such as arbitrary text translation. These
lexicons cover a number of language including English, German, Finnish, Bulgarian, Hindi,
Urdu and their size ranges from 10 to 50 thousand lemmas.

In WP5 we also experimented with open-domain robust translation based solely on GF.
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This is a huge step since the traditional application domain of GF is in controlled languages
where the domain is small and well defined, while in the task of translating running text
the source language is not clearly defined anymore. As a simple numerical measure for the
leap, we can say that the typical GF applications deal with grammars containing hundreds
of lemmas while in this experiment our grammars contain more than 50,000 lemmas. We
developed an entirely new runtime system for GF in C which has the advantage to be more
portable and more efficient. The efficiency was the first requirements that we had to satisfy
since otherwise interpreting these huge grammars would be intractable. Furthermore, we
turned the original non-probabilistic algorithms for parsing and reasoning into probabilis-
tic ones. The introduction of probabilistic models is crucial for the disambiguation of the
grammars which are by necessity highly ambiguous. The third major contribution to the
project is that we also made the GF parser robust, i.e. when faced with sentences which
are not parseable, it returns a sequence of recognized chunks rather than an error. We eval-
uated our implementation with state-of-the-art statistical parsers for related grammatical
formalisms, and we found that for sentences longer than 25 tokens, our implementation
is at least two orders of magnitude faster. We also tried to use our new architecture in
machine translation but here the results are not conclusive yet. We found that the two
main limitations are in the quality of the translation dictionaries which we built and the
still limited coverage of the grammars. Furthermore, we need to better address the word
sense disambiguation and the proper translation for multiword expressions.

The translation of patents using this robust parsing is still in an embryonic state, but
we have developed a complete translation system that combines GF and SMT to overcome
the input controlled language assumption. This hybrid system implies the construction of
in-domain dictionaries and grammars that make use of probabilistic components, and the
integration with an SMT engine that is able to complement GF translations. Regarding
these resources for patent translation, we emphasise the generation of static lexicons ob-
tained from SMT translation tables, and the on-line generation of lexicons with unseen
vocabulary but available in the monolingual dictionaries. For German, also a dictionary
of compounds has been built. A grammar for dealing with patents in English, French and
German has been built on top of the resource grammar with several additions devoted to
deal with chunks instead of sentences. Particular constructions appearing in patents are
also covered by this new in-domain grammar. As a demand of the selected domain, we have
also developed a detector and tokeniser of chemical compounds. A full translation system
uses this tokeniser and prepares the patent to be translated. This involves chunking and
parsing the source sentences which are first translated by GF and afterwards sent to an
SMT decoder which is fed with this information. An SMT engine trained on the domain
is also used by the top decoder. The final hybrid system is available for download and has
several options that take into account which method to build the lexicon has to be used
and which kind of integration is to be applied.
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A Automatic Evaluation of the Hybrid Systems

This Appendix shows the complete automatic evaluation of the hybrid systems described
in Section 7. Table 29 describes the characteristics of each of the systems here evaluated.

The following subsections report lexical and syntactic scores for the translation of two
test sets, MAREC and EPOMT (see Section 2.2 for the details).

A.1 Nomenclature

A.2 English-to-French translation

A.3 English-to-German translation
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Base Lexicon Multiple Integration GF on dev
lexicon acquisition GF options

HI-Sts – static ◦ hard ◦
HI-SaBs base safe ◦ hard ◦
HI-UnBs base unsafe ◦ hard ◦
HI-SaEs extended safe ◦ hard ◦
HI-UnEs extended unsafe ◦ hard ◦
HI-Stm – static • hard ◦
HI-SaBm base safe • hard ◦
HI-UnBm base unsafe • hard ◦
HI-SaEm extended safe • hard ◦
HI-UnEm extended unsafe • hard ◦
SI-Sts – static ◦ soft ◦
SI-SaBs base safe ◦ soft ◦
SI-UnBs base unsafe ◦ soft ◦
SI-SaEs extended safe ◦ soft ◦
SI-UnEs extended unsafe ◦ soft ◦
SI-Stm – static • soft ◦
SI-SaBm base safe • soft ◦
SI-UnBm base unsafe • soft ◦
SI-SaEm extended safe • soft ◦
SI-UnEm extended unsafe • soft ◦
HIdev-Sts – static ◦ hard •
HIdev-SaBs base safe ◦ hard •
HIdev-UnBs base unsafe ◦ hard •
HIdev-SaEs extended safe ◦ hard •
HIdev-UnEs extended unsafe ◦ hard •
HIdev-Stm – static • hard •
HIdev-SaBm base safe • hard •
HIdev-UnBm base unsafe • hard •
HIdev-SaEm extended safe • hard •
HIdev-UnEm extended unsafe • hard •
SIdev-Sts – static ◦ soft •
SIdev-SaBs base safe ◦ soft •
SIdev-UnBs base unsafe ◦ soft •
SIdev-SaEs extended safe ◦ soft •
SIdev-UnEs extended unsafe ◦ soft •
SIdev-Stm – static • soft •
SIdev-SaBm base safe • soft •
SIdev-UnBm base unsafe • soft •
SIdev-SaEm extended safe • soft •
SIdev-UnEm extended unsafe • soft •

Table 29: Main characteristics of the hybrid systems analised in Section 7.
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

HI-Sts 34.28 23.76 32.43 54.36 9.13 38.58 70.08 66.23 71.47
HIdev-Sts 33.91 23.35 32.05 54.79 9.18 38.91 70.44 66.82 72.28
HI-Stm 34.04 23.61 32.22 54.65 9.16 38.78 70.25 66.41 71.89
HIdev-Stm 33.99 23.66 32.20 54.93 9.17 39.04 70.72 66.79 72.20

HI-SaBs 44.95 33.27 42.64 43.73 7.80 32.44 61.71 52.94 51.77
HIdev-SaBs 44.04 31.84 41.75 44.55 7.89 32.98 61.78 53.69 53.46
HI-SaEs 44.48 32.80 42.14 44.27 7.88 32.87 62.31 55.30 53.14
HIdev-SaEs 44.00 31.98 41.71 44.77 7.92 33.18 62.33 55.44 54.01
HI-SaBm 39.10 27.80 37.09 48.65 8.41 35.06 64.62 57.48 61.24
HIdev-SaBm 38.47 26.94 36.47 49.22 8.48 35.44 64.81 58.19 62.43
HI-SaEm 38.53 27.17 36.54 49.48 8.53 35.74 65.51 60.23 63.03
HIdev-SaEm 38.02 26.36 36.07 50.12 8.59 36.18 65.66 60.43 64.04

HI-UnBs 44.75 32.94 42.39 43.88 7.82 32.52 61.91 53.17 52.20
HIdev-UnBs 43.65 31.12 41.32 44.87 7.93 33.13 61.85 53.92 54.20
HI-UnEs 44.30 32.50 41.92 44.36 7.90 32.90 62.48 55.53 53.50
HIdev-UnEs 43.47 31.01 41.21 45.11 7.98 33.36 62.34 55.99 54.98
HI-UnBm 38.97 27.51 36.93 48.79 8.43 35.14 64.77 57.67 61.58
HIdev-UnBm 38.31 26.54 36.27 49.34 8.50 35.51 64.94 58.51 62.84
HI-UnEm 38.43 26.94 36.41 49.55 8.54 35.73 65.62 60.40 63.27
HIdev-UnEm 37.84 26.05 35.84 50.23 8.61 36.19 65.81 60.80 64.44

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

HI-Sts 55.67 58.22 40.03 63.82 7.02 98.72
HIdev-Sts 56.46 58.91 40.86 64.54 7.06 99.99
HI-Stm 55.71 58.32 40.19 63.99 7.06 99.01
HIdev-Stm 56.02 58.81 40.36 64.36 7.07 99.51

HI-SaBs 47.79 50.72 35.63 55.54 6.19 86.33
HIdev-SaBs 48.84 51.91 36.40 56.38 6.31 88.06
HI-SaEs 48.10 50.82 35.56 56.06 6.21 86.64
HIdev-SaEs 48.67 51.51 36.24 56.43 6.28 87.74
HI-SaBm 50.84 54.11 37.67 59.14 6.64 91.94
HIdev-SaBm 51.66 55.01 38.06 59.79 6.72 93.16
HI-SaEm 51.45 54.59 37.99 59.87 6.68 92.81
HIdev-SaEm 52.13 55.18 38.55 60.22 6.77 93.89

HI-UnBs 48.16 50.95 35.91 55.87 6.21 86.81
HIdev-UnBs 49.21 51.94 36.66 56.75 6.35 88.58
HI-UnEs 48.35 51.01 35.81 56.37 6.22 87.05
HIdev-UnEs 49.09 51.91 36.62 57.02 6.33 88.52
HI-UnBm 51.13 54.31 37.98 59.45 6.66 92.40
HIdev-UnBm 52.12 55.26 38.36 60.20 6.74 93.73
HI-UnEm 51.62 54.75 38.15 60.12 6.70 93.13
HIdev-UnEm 52.33 55.45 38.75 60.61 6.79 94.32

Table 30: Hard integration hybrids, for the English-to-French translation of the
MAREC test set.
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

SI-Sts 27.45 18.43 25.88 62.30 9.94 44.99 75.90 72.44 61.95
SIdev-Sts 26.90 17.71 25.33 62.82 10.01 45.31 76.11 73.63 63.45
SI-Stm 27.44 18.41 25.86 62.32 9.94 45.01 75.91 72.46 61.99
SIdev-Stm 26.81 17.69 25.23 63.05 10.03 45.57 76.21 73.49 63.69

SI-SaBs 27.24 18.51 25.72 62.20 9.91 44.94 75.79 72.04 61.91
SIdev-SaBs 26.92 18.11 25.42 62.70 9.96 45.39 75.95 72.35 62.83
SI-SaEs 27.16 18.35 25.62 62.38 9.94 45.05 75.91 72.34 62.26
SIdev-SaEs 26.84 18.06 25.32 62.65 9.96 45.24 76.13 73.07 63.05
SI-SaBm 27.18 18.56 25.69 62.28 9.92 45.02 75.85 72.02 61.96
SIdev-SaBm 26.71 18.07 25.28 62.62 9.95 45.19 75.88 72.50 62.94
SI-SaEm 27.26 18.56 25.77 62.29 9.92 45.05 75.79 72.09 61.91
SIdev-SaEm 26.79 18.00 25.29 62.81 9.98 45.54 75.98 72.77 63.19

SI-UnBs 27.28 18.54 25.76 62.11 9.91 44.76 75.75 72.00 61.76
SIdev-UnBs 26.93 18.18 25.43 62.49 9.94 45.06 75.91 72.32 62.60
SI-UnEs 27.20 18.39 25.67 62.29 9.93 44.85 75.86 72.28 62.09
SIdev-UnEs 26.71 17.92 25.20 62.88 9.98 45.33 76.19 73.13 63.38
SI-UnBm 27.22 18.60 25.74 62.18 9.91 44.83 75.80 71.96 61.80
SIdev-UnBm 26.86 18.17 25.41 62.65 9.94 45.41 76.03 72.59 62.83
SI-UnEm 27.29 18.59 25.80 62.21 9.91 44.85 75.74 72.04 61.76
SIdev-UnEm 26.85 18.09 25.41 62.69 9.95 45.49 75.95 72.74 62.95

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

SI-Sts 62.60 65.06 48.62 47.02 3.57 97.89
SIdev-Sts 64.05 66.36 50.25 47.62 3.59 99.74
SI-Stm 62.60 65.06 48.62 47.02 3.57 97.89
SIdev-Stm 63.61 66.21 49.97 47.55 3.59 99.39

SI-SaBs 62.71 65.36 49.31 47.26 3.59 98.50
SIdev-SaBs 63.40 66.00 50.30 47.46 3.61 99.47
SI-SaEs 62.85 65.49 49.27 47.30 3.59 98.58
SIdev-SaEs 63.66 66.27 50.15 47.70 3.61 99.66
SI-SaBm 62.71 65.37 49.12 47.26 3.59 98.44
SIdev-SaBm 63.19 65.85 49.99 47.59 3.60 99.24
SI-SaEm 62.57 65.30 48.98 47.19 3.59 98.26
SIdev-SaEm 63.24 65.98 49.42 47.52 3.60 99.04

SI-UnBs 62.55 65.29 48.94 47.27 3.59 98.29
SIdev-UnBs 63.22 65.99 49.69 47.56 3.61 99.21
SI-UnEs 62.69 65.41 48.91 47.31 3.59 98.37
SIdev-UnEs 63.73 66.49 49.96 47.74 3.61 99.70
SI-UnBm 62.53 65.26 48.83 47.25 3.59 98.23
SIdev-UnBm 63.31 65.86 49.52 47.62 3.60 99.13
SI-UnEm 62.38 65.19 48.71 47.19 3.59 98.07
SIdev-UnEm 63.34 66.02 49.66 47.60 3.60 99.22

Table 31: Soft integration hybrids for the English-to-French translation of the MAREC test
set.
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

HI-Sts 37.22 23.90 35.22 53.38 9.15 33.96 65.90 61.62 66.64
HIdev-Sts 37.13 23.71 35.42 53.55 9.17 34.23 66.13 61.78 66.93
HI-Stm 36.86 23.73 34.95 53.80 9.19 34.30 66.16 61.95 67.30
HIdev-Stm 37.28 24.34 35.62 53.48 9.11 34.36 66.07 61.67 66.46

HI-SaBs 41.59 27.64 39.52 47.66 8.44 30.05 61.51 53.82 56.19
HIdev-SaBs 41.09 27.51 39.56 48.02 8.49 30.32 60.73 53.50 56.42
HI-SaEs 41.60 27.61 39.47 47.75 8.47 30.14 61.37 55.33 56.59
HIdev-SaEs 41.32 27.31 39.49 48.01 8.50 30.29 60.91 54.99 56.80
HI-SaBm 40.51 26.73 38.52 49.22 8.61 31.15 62.51 54.84 58.63
HIdev-SaBm 40.26 26.59 38.48 49.44 8.64 31.24 62.09 54.59 58.76
HI-SaEm 40.25 26.52 38.25 49.53 8.67 31.34 62.68 56.77 59.53
HIdev-SaEm 40.01 26.65 38.26 49.75 8.69 31.54 62.28 56.43 59.55

HI-UnBs 41.51 27.51 39.44 47.71 8.45 30.08 61.56 53.99 56.38
HIdev-UnBs 41.16 27.88 39.55 47.74 8.53 30.19 60.54 53.43 56.13
HI-UnEs 41.52 27.48 39.38 47.80 8.48 30.16 61.43 55.50 56.78
HIdev-UnEs 41.29 28.00 39.70 47.66 8.52 30.26 60.35 54.83 56.24
HI-UnBm 40.44 26.61 38.44 49.25 8.62 31.16 62.54 54.99 58.78
HIdev-UnBm 39.91 26.57 38.26 49.85 8.70 31.44 62.42 54.90 59.32
HI-UnEm 40.18 26.39 38.17 49.56 8.68 31.33 62.73 56.93 59.69
HIdev-UnEm 39.80 26.89 38.27 49.79 8.71 31.56 62.30 56.43 59.54

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

HI-Sts 53.54 58.07 40.21 66.15 7.40 99.56
HIdev-Sts 53.63 58.19 39.66 66.32 7.41 99.45
HI-Stm 53.78 58.35 40.29 66.41 7.45 100.00
HIdev-Stm 53.43 58.01 39.33 66.10 7.37 99.00

HI-SaBs 48.90 53.61 38.04 61.26 7.00 92.69
HIdev-SaBs 48.76 53.50 37.62 61.15 7.03 92.45
HI-SaEs 49.05 53.73 37.68 61.60 6.97 92.63
HIdev-SaEs 48.70 53.68 37.22 61.51 7.00 92.33
HI-SaBm 49.71 54.35 38.10 62.46 7.20 94.17
HIdev-SaBm 49.45 54.26 37.78 62.31 7.23 93.91
HI-SaEm 50.26 54.78 38.16 62.96 7.18 94.65
HIdev-SaEm 49.95 54.73 37.69 62.81 7.20 94.30

HI-UnBs 49.13 53.79 38.30 61.48 7.00 93.05
HIdev-UnBs 48.78 53.66 37.53 61.32 7.03 92.52
HI-UnEs 49.28 53.89 37.91 61.83 6.97 92.96
HIdev-UnEs 48.81 53.49 37.26 61.49 7.00 92.30
HI-UnBm 49.95 54.51 38.42 62.67 7.20 94.55
HIdev-UnBm 49.90 54.60 38.37 62.67 7.26 94.69
HI-UnEm 50.48 54.95 38.44 63.19 7.18 95.00
HIdev-UnEm 50.15 54.87 38.27 62.90 7.23 94.82

Table 32: Hard integration hybrids, for the English-to-French translation of the EPOMT test
set.
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

SI-Sts 30.14 19.02 28.38 61.11 9.94 40.72 72.44 70.16 63.76
SIdev-Sts 29.95 19.26 28.51 61.28 9.99 40.94 72.43 70.66 63.90
SI-Stm 30.13 18.99 28.37 61.13 9.94 40.74 72.46 70.16 63.80
SIdev-Stm 30.14 19.26 28.67 61.15 9.96 40.91 72.25 70.48 63.60

SI-SaBs 30.42 19.37 28.72 60.63 9.87 40.43 72.06 69.44 62.82
SIdev-SaBs 30.58 19.84 29.19 60.50 9.86 40.29 71.66 68.95 62.04
SI-SaEs 30.28 19.23 28.55 60.87 9.90 40.59 72.28 69.79 63.28
SIdev-SaEs 30.66 19.65 29.12 60.14 9.82 40.14 71.58 69.42 62.05
SI-SaBm 30.41 19.35 28.71 60.65 9.87 40.41 72.09 69.38 62.83
SIdev-SaBm 30.71 19.88 29.17 60.30 9.83 40.28 71.32 69.20 61.87
SI-SaEm 30.24 19.16 28.51 60.91 9.91 40.61 72.37 69.81 63.39
SIdev-SaEm 30.25 19.52 28.59 60.97 9.91 40.75 72.01 69.47 63.07

SI-UnBs 30.45 19.40 28.75 60.58 9.86 40.39 72.02 69.33 62.72
SIdev-UnBs 30.72 19.71 29.18 60.32 9.83 40.33 71.63 69.14 62.03
SI-UnEs 30.27 19.24 28.55 60.85 9.90 40.57 72.26 69.77 63.25
SIdev-UnEs 30.42 19.57 28.75 60.74 9.88 40.59 72.01 69.27 62.73
SI-UnBm 30.44 19.38 28.75 60.60 9.86 40.36 72.05 69.26 62.72
SIdev-UnBm 30.92 20.25 29.45 60.17 9.80 40.12 71.02 68.34 61.12
SI-UnEm 30.23 19.17 28.51 60.90 9.90 40.60 72.35 69.80 63.37
SIdev-UnEm 30.54 20.03 29.13 60.44 9.86 40.43 71.32 68.90 61.91

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

SI-StEs 62.67 66.50 52.03 73.76 8.00 99.48
SIdev-StEs 62.91 67.21 52.10 73.90 8.02 99.90
SI-StEm 62.68 66.55 51.98 73.76 7.99 99.47
SIdev-StEm 62.96 67.04 52.23 73.87 8.00 99.85

SI-SaBs 62.50 66.31 52.13 73.34 7.95 99.19
SIdev-SaBs 62.14 66.17 51.96 72.91 7.96 98.86
SI-SaEs 62.56 66.36 51.97 73.58 7.98 99.28
SIdev-SaEs 62.21 66.28 51.92 73.14 7.92 98.86
SI-SaBm 62.41 66.25 51.93 73.29 7.96 99.06
SIdev-SaBm 62.15 66.24 51.95 73.05 7.95 98.90
SI-SaEm 62.57 66.42 51.89 73.60 7.98 99.29
SIdev-SaEm 62.63 66.43 52.11 73.37 8.00 99.39

SI-UnBs 62.40 66.22 52.06 73.26 7.95 99.07
SIdev-UnBs 62.23 66.14 51.84 72.99 7.94 98.81
SI-UnEs 62.52 66.33 51.95 73.56 7.98 99.25
SIdev-UnEs 62.31 66.29 51.86 73.21 7.97 99.04
SI-UnBm 62.32 66.16 51.86 73.21 7.95 98.95
SIdev-UnBm 62.08 66.04 52.23 72.53 7.92 98.72
SI-UnEm 62.56 66.40 51.89 73.58 7.98 99.27
SIdev-UnEm 62.22 66.30 51.81 72.93 7.96 98.88

Table 33: Soft integration hybrids for the English-to-French translation of the EPOMT test
set.
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

HI-StBs 36.75 26.25 34.89 52.91 8.77 38.44 64.89 58.72 73.07
HIdev-StBs 35.93 24.53 34.17 53.33 8.91 38.74 64.61 59.31 74.47
HI-StEm 36.62 26.07 34.72 53.00 8.79 38.48 64.95 58.87 73.30
HIdev-StEm 35.91 24.60 34.03 53.36 8.92 38.75 64.56 59.26 74.48

HI-SaBs 48.13 36.04 45.92 43.23 7.62 32.05 56.60 48.33 54.61
HIdev-SaBs 47.53 34.88 45.47 43.47 7.69 32.10 56.00 48.46 55.32
HI-SaEs 50.61 39.13 48.79 41.12 7.25 30.75 54.18 44.05 49.49
HIdev-SaEs 50.35 38.35 48.47 41.19 7.30 30.81 53.78 44.04 49.90
HI-SaBm 47.05 35.04 44.73 44.17 7.77 32.65 58.12 50.18 56.80
HIdev-SaBm 46.76 34.01 44.55 44.34 7.80 32.70 57.20 49.97 57.13
HI-SaEm 48.84 37.29 46.89 42.47 7.48 31.56 56.06 46.56 52.78
HIdev-SaEm 48.53 36.43 46.52 42.68 7.54 31.71 55.76 46.70 53.38

HI-UnBs 48.21 36.13 46.01 43.16 7.61 32.01 56.62 48.22 54.48
HIdev-UnBs 47.53 34.85 45.42 43.54 7.69 32.17 56.17 48.45 55.43
HI-UnEs 50.72 39.23 48.90 40.97 7.24 30.66 54.18 43.92 49.29
HIdev-UnEs 50.35 38.30 48.50 41.20 7.30 30.79 53.84 44.05 49.92
HI-UnBm 47.07 35.06 44.75 44.19 7.77 32.67 58.17 50.16 56.81
HIdev-UnBm 46.69 33.93 44.43 44.46 7.81 32.75 57.45 50.01 57.32
HI-UnEm 49.00 37.43 47.05 42.32 7.47 31.47 55.98 46.35 52.51
HIdev-UnEm 48.65 36.43 46.63 42.52 7.53 31.59 55.61 46.59 53.17

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

HI-StBs 48.45 45.33 27.23 45.33 6.30 98.30
HIdev-StBs 48.76 45.94 27.43 45.94 6.39 99.37
HI-StEm 48.60 45.43 27.34 45.43 6.32 98.59
HIdev-StEm 49.10 45.93 27.97 45.93 6.42 100.00

HI-SaBs 40.74 39.32 22.47 39.32 5.65 84.51
HIdev-SaBs 41.05 39.66 22.99 39.66 5.73 85.54
HI-SaEs 38.36 37.80 22.60 37.80 5.73 82.56
HIdev-SaEs 38.44 38.05 22.78 38.05 5.77 83.06
HI-SaBm 41.78 40.03 22.92 40.03 5.69 86.01
HIdev-SaBm 41.92 40.13 23.16 40.13 5.71 86.37
HI-SaEm 39.79 38.97 22.79 38.97 5.79 84.47
HIdev-SaEm 39.98 39.32 23.04 39.32 5.82 85.12

HI-UnBs 40.68 39.25 22.46 39.25 5.65 84.40
HIdev-UnBs 41.08 39.62 23.05 39.62 5.72 85.55
HI-UnEs 38.24 37.69 22.57 37.69 5.73 82.37
HIdev-UnEs 38.37 38.13 22.94 38.13 5.78 83.24
HI-UnBm 41.80 40.01 22.94 40.01 5.69 86.01
HIdev-UnBm 42.20 40.30 23.40 40.30 5.72 86.84
HI-UnEm 39.67 38.76 22.71 38.76 5.78 84.15
HIdev-UnEm 39.93 39.25 23.06 39.25 5.81 85.03

Table 34: Hard integration hybrids, for the English-to-German translation of the
MAREC test set.
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

SI-Sts 31.87 22.92 30.21 57.43 9.35 42.88 67.47 62.55 62.58
SIdev-Sts 31.06 22.95 29.45 57.70 9.44 43.14 67.73 63.22 63.61
SI-Stm 31.89 22.92 30.22 57.42 9.35 42.86 67.47 62.54 62.56
SIdev-Stm 31.59 22.97 29.97 57.35 9.41 42.82 67.43 62.91 62.86

SI-SaBs 32.05 23.00 30.36 57.13 9.35 42.72 67.23 62.90 62.31
SIdev-SaBs 31.03 23.49 29.49 57.22 9.46 43.21 67.15 63.28 63.17
SI-SaEs 31.62 22.97 29.97 57.45 9.38 43.09 67.50 63.02 62.94
SIdev-SaEs 30.80 23.39 29.24 57.40 9.48 43.38 67.31 63.47 63.59
SI-SaBm 32.21 22.95 30.46 57.20 9.33 42.73 67.33 62.82 62.23
SIdev-SaBm 31.54 23.66 29.99 56.69 9.38 42.75 66.82 62.99 62.21
SI-SaEm 31.91 23.01 30.22 57.32 9.35 42.93 67.44 62.74 62.53
SIdev-SaEm 31.08 23.43 29.55 57.18 9.45 43.20 67.18 63.27 63.15

SI-UnBs 32.16 23.07 30.45 57.00 9.33 42.55 67.20 62.73 62.06
SIdev-UnBs 31.34 23.57 29.71 56.81 9.43 42.74 66.90 63.06 62.56
SI-UnEs 31.65 23.01 29.99 57.39 9.37 43.01 67.52 62.97 62.85
SIdev-UnEs 30.82 23.54 29.29 57.32 9.48 43.42 67.21 63.34 63.43
SI-UnBm 32.29 23.00 30.54 57.08 9.31 42.58 67.32 62.69 62.02
SIdev-UnBm 31.39 23.60 29.76 56.77 9.43 42.80 66.90 63.10 62.52
SI-UnEm 31.94 23.05 30.25 57.24 9.34 42.83 67.45 62.68 62.42
SIdev-UnEm 31.54 23.63 29.98 56.72 9.38 42.78 66.85 62.61 62.17

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

SI-Sts 52.63 50.58 32.38 50.58 6.83 98.47
SIdev-Sts 52.98 50.83 32.62 50.83 6.89 99.11
SI-Stm 52.62 50.59 32.38 50.59 6.83 98.47
SIdev-Stm 52.81 50.71 32.39 50.71 6.89 98.81

SI-SaBs 52.62 50.71 32.53 50.71 6.82 98.62
SIdev-SaBs 52.71 51.02 32.88 51.02 6.94 99.47
SI-SaEs 52.64 50.87 32.75 50.87 6.86 99.02
SIdev-SaEs 53.04 51.13 33.16 51.13 6.95 99.87
SI-SaBm 52.62 50.75 32.61 50.75 6.81 98.70
SIdev-SaBm 52.61 50.95 32.79 50.95 6.86 99.09
SI-SaEm 52.51 50.92 32.77 50.92 6.87 99.03
SIdev-SaEm 52.77 51.01 32.64 51.01 6.92 99.27

SI-UnBs 52.45 50.62 32.33 50.62 6.80 98.32
SIdev-UnBs 52.73 50.93 32.75 50.93 6.91 99.25
SI-UnEs 52.59 50.84 32.68 50.84 6.85 98.91
SIdev-UnEs 52.92 51.01 33.01 51.01 6.95 99.64
SI-UnBm 52.47 50.67 32.43 50.67 6.79 98.41
SIdev-UnBm 52.77 50.95 32.75 50.95 6.90 99.23
SI-UnEm 52.45 50.88 32.70 50.88 6.85 98.89
SIdev-UnEm 52.65 51.26 33.19 51.26 6.91 99.73

Table 35: Soft integration hybrids for the English-to-German translation of the
MAREC test set.
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

HI-Sts 39.85 27.12 37.88 54.24 8.97 33.19 60.39 55.47 71.24
HIdev-Sts 39.29 27.97 37.31 53.93 9.08 33.20 59.62 55.70 71.21
HI-Stm 39.79 27.08 37.75 54.29 8.98 33.20 60.43 55.53 71.35
HIdev-Stm 39.23 27.96 37.20 53.99 9.10 33.36 59.74 55.79 71.41

HI-SaBs 48.15 34.24 46.12 46.67 8.02 28.22 54.13 46.37 56.49
HIdev-SaBs 47.30 33.12 45.36 47.40 8.12 28.53 53.78 46.37 57.63
HI-SaEs 51.13 37.27 49.25 44.77 7.70 27.01 51.19 42.37 51.12
HIdev-SaEs 50.50 36.12 48.64 45.37 7.78 27.24 50.96 42.60 52.16
HI-SaBm 47.48 33.51 45.35 47.06 8.11 28.46 54.95 47.45 57.81
HIdev-SaBm 47.02 32.62 45.06 47.46 8.16 28.63 53.98 46.94 58.20
HI-SaEm 49.58 35.68 47.53 45.70 7.87 27.58 52.66 44.37 53.89
HIdev-SaEm 48.91 34.53 46.90 46.35 7.96 27.86 52.57 44.70 55.03

HI-UnBs 48.20 34.28 46.17 46.60 8.01 28.16 54.09 46.23 56.37
HIdev-UnBs 47.40 33.19 45.44 47.27 8.12 28.42 53.68 46.25 57.43
HI-UnEs 51.18 37.31 49.29 44.74 7.69 26.97 51.18 42.23 51.02
HIdev-UnEs 50.57 36.24 48.70 45.41 7.78 27.23 51.03 42.46 52.08
HI-UnBm 47.48 33.52 45.36 47.04 8.10 28.44 54.93 47.43 57.78
HIdev-UnBm 47.03 32.60 45.09 47.40 8.15 28.58 53.99 46.99 58.18
HI-UnEm 49.58 35.68 47.53 45.68 7.87 27.56 52.72 44.35 53.88
HIdev-UnEm 48.77 34.38 46.77 46.49 7.98 27.93 52.65 44.71 55.25

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

HI-StBs 46.32 42.66 24.74 63.27 6.06 99.66
HIdev-StBs 46.25 42.18 24.49 63.12 6.12 99.38
HI-StEm 46.32 42.69 24.64 63.26 6.06 99.60
HIdev-StEm 46.25 42.49 24.51 63.39 6.14 99.67

HI-SaBs 39.25 37.09 21.00 60.81 5.55 88.53
HIdev-SaBs 39.33 37.03 21.15 60.77 5.64 88.95
HI-SaEs 36.76 35.56 20.61 60.90 5.55 86.47
HIdev-SaEs 36.78 35.36 20.60 60.66 5.55 86.31
HI-SaBm 39.97 37.67 21.34 61.21 5.57 89.61
HIdev-SaBm 39.82 37.51 21.55 60.95 5.67 89.85
HI-SaEm 38.09 36.74 20.94 61.16 5.59 88.07
HIdev-SaEm 38.21 36.57 20.76 60.92 5.57 87.75

HI-UnBs 39.17 36.99 20.96 60.68 5.54 88.36
HIdev-UnBs 39.29 36.91 21.11 60.58 5.63 88.75
HI-UnEs 36.65 35.46 20.57 60.82 5.55 86.31
HIdev-UnEs 36.61 35.28 20.52 60.46 5.53 86.01
HI-UnBm 39.97 37.67 21.33 61.21 5.57 89.60
HIdev-UnBm 39.81 37.52 21.40 61.00 5.64 89.68
HI-UnEm 38.05 36.67 21.05 61.14 5.59 88.10
HIdev-UnEm 38.25 36.57 20.93 60.94 5.58 87.95

Table 36: Hard integration hybrids, for the English-to-German translation of the
EPOMT test set.
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WER PER TER BLEU NIST GTM-2 MTR-st RG-S* ULC

SI-StBs 35.50 25.36 33.64 58.60 9.49 37.84 63.55 61.13 63.04
SIdev-StBs 34.76 25.56 32.92 58.93 9.59 38.33 63.74 61.31 63.89
SI-StEm 35.50 25.36 33.65 58.60 9.49 37.83 63.55 61.11 63.02
SIdev-StEm 35.17 25.28 33.22 58.55 9.56 37.88 63.59 61.56 63.52

SI-SaBs 35.91 25.66 34.09 58.11 9.43 37.46 63.16 60.95 62.17
SIdev-SaBs 35.38 26.78 33.55 57.56 9.55 37.98 62.34 61.06 62.10
SI-SaEs 35.59 25.64 33.73 58.22 9.47 37.61 63.37 61.23 62.63
SIdev-SaEs 34.86 26.22 32.94 58.13 9.60 38.31 62.98 61.44 63.26
SI-SaBm 35.93 25.68 34.14 58.07 9.43 37.38 63.15 60.87 62.07
SIdev-SaBm 35.42 26.54 33.65 57.63 9.52 37.84 62.42 60.79 62.04
SI-SaEm 35.56 25.63 33.74 58.23 9.47 37.60 63.38 61.19 62.64
SIdev-SaEm 34.98 26.30 33.10 57.78 9.58 37.90 62.79 61.23 62.80

SI-UnBs 35.93 25.65 34.11 58.08 9.43 37.44 63.18 60.92 62.14
SIdev-UnBs 35.03 26.24 33.23 57.96 9.57 37.94 62.82 61.23 62.82
SI-UnEs 35.58 25.62 33.72 58.23 9.47 37.62 63.39 61.27 62.67
SIdev-UnEs 35.24 26.76 33.45 57.53 9.54 37.97 62.37 61.05 62.18
SI-UnBm 35.97 25.69 34.18 58.03 9.42 37.36 63.15 60.82 62.01
SIdev-UnBm 34.98 26.31 33.21 57.96 9.57 37.99 62.83 61.15 62.81
SI-UnEm 35.55 25.61 33.73 58.25 9.47 37.61 63.41 61.23 62.68
SIdev-UnEm 35.40 26.42 33.49 57.54 9.51 37.66 62.58 60.95 62.13

CP-Oc(*) CP-Op(*) CP-STM-9 SP-Op(*) SP-pNIST-5 ULC

SI-StBs 51.92 50.01 32.41 68.08 6.66 98.74
SIdev-StBs 52.32 50.46 33.16 68.76 6.75 100.00
SI-StEm 51.92 50.00 32.41 68.12 6.66 98.75
SIdev-StEm 52.04 49.92 32.15 68.21 6.69 98.72

SI-SaBs 51.53 49.47 31.96 67.59 6.57 97.69
SIdev-SaBs 51.97 49.50 32.44 67.60 6.73 98.63
SI-SaEs 51.95 49.88 32.44 67.87 6.59 98.45
SIdev-SaEs 52.13 50.06 32.69 68.23 6.75 99.33
SI-SaBm 51.54 49.44 31.96 67.64 6.56 97.67
SIdev-SaBm 51.57 49.51 32.15 67.82 6.69 98.26
SI-SaEm 51.81 49.76 32.25 67.74 6.57 98.13
SIdev-SaEm 51.83 49.73 32.12 67.91 6.71 98.54

SI-UnBs 51.66 49.50 32.01 67.60 6.57 97.79
SIdev-UnBs 51.70 49.46 32.10 67.63 6.70 98.24
SI-UnEs 51.96 49.92 32.41 67.89 6.59 98.46
SIdev-UnEs 52.25 49.82 32.68 67.69 6.74 99.09
SI-UnBm 51.65 49.46 32.03 67.66 6.57 97.79
SIdev-UnBm 51.82 49.40 32.13 67.69 6.70 98.30
SI-UnEm 51.83 49.81 32.26 67.78 6.57 98.19
SIdev-UnEm 51.62 49.63 32.25 67.95 6.68 98.40

Table 37: Soft integration hybrids for the English-to-German translation of the EPOMT test
set.
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B One-click System

B.1 Installation

The hybrid systems developed in this workpackage have been build using freely available
software and in-house components. The system can be used in a regular machine with the
previous installation of standard translation software: Moses, SRILM and GF. For this gcc

and Haskell are needed. The specific GF grammar for patents and the Genia chunker
are needed to deal with the biomedical domain. Perl is also necessary in order to run
the main script and the tokeniser for the biomedical domain. In the following, we list the
components together with information about where to download every component and how
to install it.

• Main script
Download: From consortium
Install: No need; modify the script with the correct paths to the other software

• In-domain tokeniser
Download: From consortium
Install: No need

• Genia chunker [45]
Download: http://www.nactem.ac.uk/GENIA/tagger/
Install: Own README file

• Grammatical Framework [36]
Download: http://www.grammaticalframework.org/download/index.html
Install: Instructions in the same download link

• GF patents grammar
Download: From consortium
Install: Compile the grammar modules with ghc

ghc --make -O3 MainTranslate

• SRILM [41]
Download: http://www.speech.sri.com/projects/srilm/download.html
Install: Own INSTALL file

• Moses [20]
Download: git clone git://github.com/moses-smt/mosesdecoder.git

Install: Own BUILD-INSTRUCTIONS.txt file

With these components working, running the main script with the file to translate and
the language pair is enough. Running the script without this information displays a help
screen:
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csmisc14:hybrid cristina$ perl H1PTrad.pl

Usage: perl H1PTrad.pl -v # -m [runtime|unsafe|demo] <input> [src2trg]

-v: verbosity [0,1,2]

-m: mode [runtime|unsafe|demo]

input: file to translate

src2trg: language pair

Ex: perl H1PTrad.pl -v 1 -m demo /Users/cristina/hybrid/input/patsA61P.test.en en2fr

The first parameter indicates the amount of verbosity desired during the execution. The
command “-v 0” displays no information at all, “-v 1” prints information about the
ongoing step and the time it takes. Finally, “-v 2” also displays the output of the Moses

decoder in the console.
Next, “-m” allows to choose the characteristics of the GF system. “-m demo” uses a

static lexicon, it is both the fastest version and the one with the best performance in our
experiments. “-m runtime” and “-m unsafe” build the lexicon at runtime in safe and
unsafe modes (see Section 4 for the exact definion). By default, the translator uses the
extended base lexicon and generates multiple GF translations.

The behaviour of the top SMT system is fixed within the script. It uses a soft integra-
tion of GF and the base SMT translator, and the weights fitted in the development process
are obtained when the GF translations are also available. This default configuration cor-
responds to the SIdev-Stm system.

The third parameter “<input>” corresponds to the absolut path to the file to be trans-
lated. This file must be a raw text, one fragment per line, in the same way of Moses input
files. Text should not be tokenised and the original capitalisation should be kept.

Finally, “[src2trg]” indicates the source language (src) and the target language one
wants to translate into (trg). “en”, “fr” and “de” should be used for English, French and
German respectively.
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