
Published on Multilingual Online Translation (http://www.molto-project.eu)

Home > Printer-friendly > Book > Export > Html > 1936 > D6.3 Assistant for solving word problems

D6.3 Assistant for solving word problems

Contract No.: FP7-ICT-247914
Project full title: MOLTO - Multilingual Online Translation
Deliverable: Assistant for solving word problems
Security (distribution level): Public
Contractual date of delivery: December 2012
Actual date of delivery: May 2013
Type: Prototype
Status & version: Final
Author(s): Jordi Saludes
Task responsible: Jordi Saludes
Other contributors:

Abstract

We will introduce a prototype for dealing with simple arithmetical problems involving concepts of the physical world (word
problems). The first software component allows an author to state a word problem by writing sentences in several languages and
converting it into Prolog code. The second component takes this code and presents the problem in the student's language. Then it
provides step-by-step assistance in natural language into writing equations that correctly model the given problem.

1. Introduction
This software deliverable is a prototype of a word problem solver, namely a system that interactively poses a word problem, (in
many languages), then constructs a solution and a reasoning context for it. The overall architecture is based on the usage of third-
party, open-source software components to provide the reasoning infrastructure for the system and are not distributed in this
deliverable.

This document describes:

how to install the prototype,

how to create word problems involving simple arithmetic;

how to assisting a student into finding the equations related to it.

The first component is a Scala library (http://www.scala-lang.org) to be used inside the Scala Interpreter shell (in a
Read-Evaluate-Print Loop), while the second component is a dialog system which runs in the command line. Both components
were developed within the framework of the MOLTO project.

2. Installation
The source code for this deliverable can be downloaded from the MOLTO svn repository by:

 svn co svn://molto-project.eu/mgl/wproblems

It will appear into the wproblems directory. But prior to building the system for the natural language interpretation of the word

http://www.molto-project.eu/print/book/export/html/1936

1 of 7 5/27/13 4:01 PM

problems, you need to install the external components that are handling the computational aspects of the system.

Software requirements
Third-party software components provide the following functionalities in the system:

SWI prolog; (in our architectures, (1) SWI-Prolog version 6.2.2 for i386-darwin11.3.0, (2) SWI-Prolog (Multi-
threaded, 64 bits, Version 6.2.6). Set the environment variable SWIPL_LIBDIR to the path to the swi-prolog library. The
prototype employs Prolog as domain reasoner for certain schemata of word problems.
Scala; (in our architectures, (1) 2.9.2, (2)Scala version 2.10.1 (Java HotSpot(TM) 64-Bit Server VM, Java 1.6.0_43) -
Scala is a general purpose programming language designed to express common programming patterns using both object-
oriented and functional paradigms. Conciseness is a key feature of Scala (scalable language). The prototype employs Scala
for constructing, from natural language input, a Prolog program that can solve the problem.

In addition, the system requires the availability of the jpl library for accessing Prolog from Java code. It is installed by the prolog
installer, check that the jpl.jar exists and write down the path (It will be needed for the configuration step below).

Project-related software components:

GF; (in our architecture, version version 3.4). GF is used to provide the natural language parsing and generation in the
Dialog system.

gf-java to use the GF web services from Java; (distributed under lib, version gf-java-0.8.1.jar).

Install all the components as directed. Now configure by passing SWIPL_LIBDIR for the path to the swi-prolog library and
JPL_LIBDIR for the path to the directory containing jpl.jar. In our case:

 ./configure SWIPL_LIBDIR=/opt/local/lib/swipl-6.2.2/lib/i386-darwin11.3.0/ JPL_LIBDIR=/opt/local/lib/swipl-6.2.2/lib/

and then build the system

 make

3. Quick examples of usage
Having finished the installation step, we are now ready to use the system1.

In this document word problem means a mathematical problem requiring writing the equations describing all the relevant
information needed to get the solution. We we'll split the solution of such a problem into:

Modeling:
Finding out the equations describing all the relevant information needed to get the solution. This requires the student to use
common sense reasonong abot the world and the ability to write these relations in the mathematical language.

Solving:
Determining the solution by handling the equations in a pure formal way.

There are a lot of applications for helping students with solving step but only a few for the modeling step. We will present here a
prototype for addressing this step for problems requiring just elementary arithmetics.

The system allows two modes of usage, for authors (teachers) and for students:

creation of a word problem
tutorial dialog for solving a word problem.

The first application runs inside the Scala REPL, and consists in a library implementing the class Problem with resources for
constructing problems from natural language sentences. Problems are saved as Prolog clauses with comments used to reconstruct
the originating sentences. The second application is a Scala executable that loads a saved problem and engages the student in a
nalural lenguage dialog conducting to have the problem correctly modeled.

Both applications use a Prolog database to reason about the problem. The basic difference is that for the author tool, the system
constructs the model automatically in order to check if the problem is consistent (it does not contain contradictions) and complete
(it has enough information to give a single solution), while for the student tool, the model construction is driven by the sentences
proposed by the student. The system leads the student through several discovering steps (see next section) and checks that the
proposed sentences are correct and relevant.

http://www.molto-project.eu/print/book/export/html/1936

2 of 7 5/27/13 4:01 PM

Writing a word problem
Invoke the author tool by:

./create

Create a new problem to be saved into file fruit.pl

scala: val p = new Problem("fruit.pl")
p: wp.Problem = Problem with 0 statements

We could use the Statement class to add new statements to the problem with the += operator. However, it is more convenient to
define a statement factory for entering them in natural language (denoted by its 3-letter ISO code):

scala: val en = new StatementFactory("Eng")

We can now use a predictive parser to enter a new sentence into the problem:

scala: p += en.read
Eng: John has seven fruit .

Notice the final period. We can keep track of how many statements our problem has by:

scala: p
res1: wp.Problem = Problem with 1 statements

Let us add some more facts:

scala: p += en.read
Eng: John has two apples , some oranges and three bananas .
scala: p += en.read
Eng: how many oranges does John have ?

To take a look to the internal representation of the problem, use print:

scala: p.print

We can check if the problem is consistent (it does not contain contradictory statements) or complete (it has a single solution) by
using the methods consistent and complete:

scala: p.complete
res3: Boolean = true

Remember to save the problem:

scala: p.save()
Saved to 'fruit.pl'

and now we can exit:

:q

Solving the problem
We can now try to solve our problem, by calling model with the file containing the problem:

 ./model fruit.pl

It shows us the statement of the problem:

John has seven fruit .
John has two apples , some oranges and three bananas .
how many oranges does John have ?

and displays the prompt:

 ?

We can always press return at the prompt (or type help) for the system to suggest the proper action:

you must assign a variable to the oranges that John has .

But we do not know how to assign variables. Let us ask for an example:

http://www.molto-project.eu/print/book/export/html/1936

3 of 7 5/27/13 4:01 PM

? give me an example
let x denote the animals that Mary has

Using this template we can now compose a definition for the variable x:

? let x denote the oranges that Mary has
you must assign a variable to the oranges that John has .

I forgot that we were dealing with John's fruit, not Mary's:

? let x denote the oranges that John has
it is right .

Press again return for the next suggestion:

you must split the fruit that John has .

This means that we have to specify how John's fruit are split in different classes:

 ? the fruit that John has are the apples that John has and the bananas that John has
 you must consider oranges .

Yes, there are oranges too. Let us correct it:

 ? the fruit that John has are the apples that John has , the bananas that John has and the oranges that John has
 it is right .

Good. Next suggestion:

you must write an equation which says that the fruit that John has are the bananas that John has ,
the oranges that John has and the apples that John has .

What about this?

? y plus 2 plus 3 is equal to 7
it doesn't follow .

This means that the proposed equation can not be deduced from the statement of the problem. Let us see what is wrong with the
variable y:

? tell me about y
nothing is known about it .

Perhaps we used a different variable to denote the amount of oranges:

? tell me about the oranges that John has
the oranges that John has are x oranges .

So we used x for it. Just to confirm it:

 ? tell me about x
 x denotes the oranges that John has .

We rewrite the equation using x:

? x plus 2 plus 3 is equal to 7
it is right .

Now the problem is correctly modeled. The next action will give us the solution:

the oranges that John has are two oranges .

Going multilingual
To run the same problem but in Spanish, add the 3-letter-ISO code of the language as second argument:

./model examples/fruit.pl spa

...
Juan tiene siete frutas .
Juan tiene dos manzanas , algunas naranjas y tres plátanos .
¿ cuantas naranjas tiene Juan ?

Asking for help:

?

http://www.molto-project.eu/print/book/export/html/1936

4 of 7 5/27/13 4:01 PM

debes asignar una variable a las naranjas que Juan tiene .

Asking for an example:

? dame un ejemplo
denota las cartas que María tiene por z

The system will start/stop the GF-java service for you, but if you run into trouble you can check the state of the service by:
bin/wpserver status and stop it by: bin/wpserver stop. ↩

1.

4. Reasoning aspects of word problems
Word problem schemata
The current prototype allows to state word problems of the following form:

 John|Mary has|owns one|two|...|seven|some fruit|apples|oranges|bananas|animals|rabbits|cows

in the languages: English, Catalan, Swedish and Spanish.

Amounts

The building block for the reasoning is the amount: a relaxed version of a set in which one does not have access to the
composing elements, but can know the number of elements in it.

An amount is constructed by:

Giving the cardinal and the class of its elements (i. e. three oranges). Notice that the cardinal may be undefined (i. e. some
oranges);

The own predicate binding an individual and a class (i. e. the apples that John has);

Disjoint unions of these constructions (three apples and two oranges)

Propositions

Available sentences express the equality between two amounts (i. e. The fruit that John has are two apples and some
oranges)

The modeling process implies transforming a set of propositions into another set in which the numerical interpretation is evident.

Setting the problem model
We consider two grammars to express these facts:

The plain language is for direct communication with the user;

The core language is for the reasoner to work with.

This is how we express the amount John apples in plain (Prolog concrete):

own(john, apple)

while in core:

p(X, apple, own(john,X))

The latter is more suited to reasoning with it.

Another step into normalizing (making it core) an amount is to disaggregate sums. In this way a statement like John has three
apples and six bananas is converted into: John has three apples and John has six bananas.

Another case is to convert questions as how many apples does Mary have? which are represented in plain as:

find(own(mary,apple))

http://www.molto-project.eu/print/book/export/html/1936

5 of 7 5/27/13 4:01 PM

into the core expression:

find(X, apple, own(mary,X))

A set of statements in core language is what is needed to process a word problem. This is what the create tool saves: A Prolog
file consisting of:

A GF abstract tree for the plain sentence of a problem. This is written as a Prolog comment.

Core statements in Prolog format that correspond to the plain expression.

As an example, this is a complete problem in core Prolog clauses. The comments contain the GF abstract tree corresponding to
the original plain expression:

% abs:fromProp (E1owns john (gen Fruit n7))
% Eng:John has seven fruit .
-(p(_1, fruit, own(john, _1)), *(7, unit(fruit))).
% abs:fromProp (E1owns john (aplus (ConsAmount (gen Apple n2) (BaseAmount (some Orange) (gen Banana n3)))))
% Eng:John has two apples , some oranges and three bananas .
-(p(_5, apple, own(john, _5)), *(2, unit(apple))).
-(p(_6, banana, own(john, _6)), *(3, unit(banana))).
-(p(_7, orange, own(john, _7)), some(orange)).
% abs:fromQuestion (Q1owns john Orange)
% Eng:how many oranges does John have ?
find(_19, orange, own(john, _19)).

Workflow for modeling a problem
When the model tool is started on a word problem file, the system uses the GF abstract lines to display the statement of the
problem in the selected language. Now the student must go through a sequence of steps to have the problem correctly modeled:

Assigning variables. At the beginnig the student must choose variables to designate unknowns that are relevant to the
problem. This includes the target unknowns (they appear as arguments of find clauses) and expressions like some apples.

1.

Discovering relations. In this step the student has to combine information from different statements into new relations. For
example, decomposing the fruits that John has into the apples and bananas that John has.

2.

Stating equations. In the next step, the student converts the relations uncovered in the previous step into numerical
equations. This steps finishes when there are enough equations to determine the unknowns of the problem. The system
checks that the student's equations are consistent equations and are entailed by the problem information.

3.

Final. At the last step, the system displays the solution for the unknowns of the problem and exits.4.

5. Current limitations and future work
The current prototype is a proof of concept aiming at demonstrating that the semantics of word problems can be handled given a
formalization of the specific domain, a decision procedure on the resulting model, and a natural language application that allows
to express and semantically interpret the facts describing the specific world instance.

In this work we have considered problems of a specific kind but we maintain that, in the e-Learning scenario, which is our target
area of application, word problems can be classified according to schemes which can be formalized along the lines shown here. In
many problems, understanding of natural language formulation is translated to facts in the knowledge base where two seemingly
independent facts are put in a relation and become a new assumption for solving the problem (if A is an animal tamer, then A is
not afraid of animals. if F is the father of S, then F is older than S. Every orange is a fruit). Construction of the correct
assumption can be done in an exhaustive way only under a finite world assumption (what is known is what it is explicitly stated).

Future work
Replacing the Prolog engine by a proof assistant. These systems delivers proofs of propositions in a theory. By using a theory
supporting a kind of word problems and forcing the problem author to express the problem as a a valid theorem in this theory
would have the benefit of uncover hidden assumptions on the problem statement.

Also, these systems being more expressive than Prolog clauses, and supporting complex tactics for automatic proving could
benefit the maintenance of the system.

On the student side, the discovering of new facts is converting into asserting propositions that can be transparently proved by
tactics or presented to the student to deal with them: This would lead to re-using the same problem in different educations levels

http://www.molto-project.eu/print/book/export/html/1936

6 of 7 5/27/13 4:01 PM

according to what is assumed and what is proved by the student.

Source URL: http://www.molto-project.eu/wiki/living-deliverables/d63-assistant-solving-word-problems

http://www.molto-project.eu/print/book/export/html/1936

7 of 7 5/27/13 4:01 PM

