
Contract No.: FP7-ICT-247914
Project full title: MOLTO – Multilingual Online Translation
Deliverable: D8.3 W8 Translation and retrieval system

for museum object descriptions
Security (distribution level): Public
Contractual date of delivery: M36
Actual date of delivery: March 31, 2013
Modified: April 22, 2013
Type: Regular Publication
Status & version: v2.0
Authors: Dana Dannélls, Aarne Ranta, Ramona Enache

Mariana Damova, Maria Mateva
Task responsible: UGOT
Other contributors: Ontotext

ABSTRACT
This is the final report of Workpackage 8: Case Study: Cultural Heritage. The major
contributions reported are ontology-based multilingual grammar covering 15 languages
and cross-language retrieval system for museum object descriptions using Semantic Web
technology. Our groundwork for this deliverable was laid in D8.1: Ontology and corpus
study of the cultural heritage domain,a and D8.2: Multilingual grammar for museum
object descriptions.b

ahttp://www.molto-project.eu/biblio/d81-ontology-and-corpus-study-cultural-heritage-domain
bhttp://www.molto-project.eu/biblio/deliverable/multilingual-grammar-museum-object-descriptions

Contents

1 Introduction 3

2 The GF application grammar 3
2.1 Lexicon Grammar . 4
2.2 Data Grammar . 6
2.3 Answer Grammar . 7
2.4 Query Grammar . 8

2.4.1 YAQL Grammar . 9
2.4.2 SPARQL Grammar . 9

2.5 Text Grammar . 11

3 The Data 16
3.1 Creation of unified reference layer . 18
3.2 The GF data . 19
3.3 Challenges . 20

4 The retrieval system 21
4.1 System workflow . 22
4.2 Multilingual interface . 26

4.2.1 NL queries user interface . 26
4.2.2 RDF browsing view . 28
4.2.3 SPARQL endpoint . 30

5 Conclusions 30

References 31

2

1 Introduction

The purpose of the work presented here has been to develop a multilingual system that
enables interaction with digital museum libraries that are today accessible in semantically-
enriched content through the deployment of Semantic Web technologies [14, 15, 16, 23]
such as the Resource Description Framework (RDF) [21], RDF Schema (RDFs) [3], and
the Web Ontology Language (OWL) [19]. Such a system can become of a value to museum
visitors who wish to enrich their cultural knowledge through written or spoken media.

In previous reports [6, 8, 12], we described how to promote multilingual access to muse-
ums that usually use their own ontology and terminologies on the World Wide Web (WWW)
and presented a prototype that exploits Natural Language Generation (NLG) techniques to
render as text the retrieved informational content in six languages [10, 11]. In this deliver-
able we report on a multilingual grammar methodology that has been developed to enable
querying a semantic repository in natural language (NL) and automatically generate well-
formed descriptions from a set of RDF statements retrieved as the results. The presented
methodology offers flexibility regarding interactivity with generic language-specific and
domain-dependent resources – a requirement that has been emphasized by many authors
in the past [4, 20, 22, 27, 29].

The proposed method includes several steps of transition from natural language to
SPARQL (SPARQL Protocol and RDF Query Language) [18] and from RDF to coherent
multilingual descriptions. Querying the Semantic Web in natural language, more specif-
ically, using English to formulate SPARQL queries with the help of controlled natural
language (CNL) syntax has been developed before [17]. However, we are not aware of a
multilingual Semantic Web approach for querying and generating well-formed descriptions
from Semantic Web content for which lexicons are not available. Using the Grammatical
Framework (GF) [24, 26], we are able to present a cross-language grammar system covering
15 languages and a cross-language retrieval system that uses this grammar for generating
museum object descriptions in the Semantic Web.

2 The GF application grammar

The application grammar that has been developed to enable multilingual interaction with
Semantic Web content aims to share as many resources as possible between different, more
generic grammars. It contains the following grammars:

• Lexicon: Ontology concepts and properties
• Data: Ontology instances
• Answer: Top, module, provides answers about everything in the domain
• Query: Covering structural and yes/no questions of 11 languages, and SPARQL

syntax
• Text: Covering the syntax and discourse patterns of written artwork descriptions

3

Our application grammar covers 15 languages of those that are available in the Resource
Grammar Library (RGL) [25]. More specifically, the supported languages are: Bulgarian,
Finnish, Norwegian, Catalan, French, Romanian, Danish, Hebrew, Russian, Dutch, Italian,
Spanish, English, German and Swedish. In the following, we describe each of the grammars
in more details.

2.1 Lexicon Grammar

The lexicon grammar is intended to cover the ontology terminology (Tbox). It contains
linearizations of a subset of the ontology concepts and properties that are covered in the
underlying data models [7], more specifically the CIDOC-CRM and the Painting ontologies.
Examples of these concepts and the properties are shown in Table 1. Examples of how
concepts and properties are presented in the abstract syntax, LexiconPainting.gf, are:

PTPainting, PTPortrait, PTOilPainting, PTWatercolour,

PTMiniature : PaintingType ;

MCanvas, MWood, MPaper, MLinen : Material ;

PTitle : Title -> Painting ;

YInt : Int -> Year ;

SIntInt : Int -> Int -> Size ;

The concrete syntaxes, captured in LexiconPainting{LANG}.gf,1 have been created
manually by native speaker of the language; functions that are linearized differently de-
pending on the language.

Most of the ontology concepts that are defined in this grammar as categories are lin-
earized with noun phrases in the concrete syntaxes using the RGL. As shown below.

Swe.

PTPainting = mkCN (mkN "målning") ;

PTPortrait = mkCN (regGenN "porträtt" neutrum) ;

MCanvas = mkMaterial "kanvas" ;

Fre.

PTPainting = mkCN (mkN "tableau") ;

PTPortrait = mkCN (mkN "portrait") ;

MCanvas = mkMaterial "canvas" ;

1LANG is a string to be replaced with a three letter code of the language, e.g. LexiconPaintingSwe.gf,
LexiconPaintingFre.gf, etc

4

Fin.

PTPainting = mkCN (mkN "maalaus") ;

PTPortrait = mkCN (mkN "muoto" (mkN "kuva")) ;

Ger.

PTPainting = mkCN painting_N ;

PTPortrait = mkCN (mkN "Porträt" "Porträts" neuter) ;

MCanvas = mkMaterial "Leinwand" ;

Where the function mkMaterial is defined as follows for all languages.

mkMaterial : Str -> NP = \s -> mkNP (mkPN s) ;

Two of the ontology concepts that are not linearized with a noun phrase correspond to
the categories Year and Size. These are linearized with prepositional phrases in which the
preposition is language dependent. Below are some examples.

Bul. YInt i = SyntaxBul.mkAdv prez_Prep (symb (i.s ++ year_Str)) ;

Fin. YInt i = SyntaxFin.mkAdv (prePrep nominative "vuonna") (symb i) ;

Fre. YInt i = SyntaxFre.mkAdv en_Prep (symb i) ;

Ger. YInt i = SyntaxGer.mkAdv in_Prep (symb i) ;

Swe. YInt i = SyntaxSwe.mkAdv noPrep (symb ("år" ++ i.s)) ;

Rus. YInt i = SyntaxRus.mkAdv in_Prep (symb (i.s ++ godu_Str)) ;

The ontology properties are defined with operations in the concrete syntaxes. Because
an ontology property is linearized differently depending on how it is realized in the target
language, these operations are of type: verbs, adverbs and prepositions, as shown below.

Swe.

paint_V2 : V2 = mkV2 "måla" ;

painted_A : A = mkA "målad" ;

at_Prep = mkPrep "på" ;

Fin.

paint_V2 = mkV2 "maalata" ;

painted_A = mkA "maalattu" ;

Ger.

paint_V2 : V2 = mkV2 (mkV "malen") ;

painted_A : A = mkA "gemalt" ;

at_Prep = in_Prep ;

This approach permits variations regarding the lexical units the ontology properties
should be mapped to. It allows to make principled choices about the different realization
of an ontology property.

5

2.2 Data Grammar

As opposed to the lexicon grammar (Section 2.1), the data grammar is created automati-
cally from the data that is extracted from the datasets, more specifically from GCM and
DBpedia. It contains instances of the three core concepts that we cover in the text grammar
(Section 2.5), namely: Title, Painter and Museum. In the abstract syntax these concepts
are defined as categories, in the concrete, they are linearized with strings or noun phrases.

MGothenburg_City_Museum : Museum ;

MMus_e_du_Louvre : Museum ;

TGuernica__28painting_29 : Title ;

PRembrandt_Harmenszoon_van_Rijn : Painter ;

There are two concrete syntaxes which are produced automatically: DataPaintingCnc.gf
and DataPainting{LANG}.gf. All the instances from the ontology are linearized in Dat-
aPaintingCnc. Underscores are a side effect of the automated generation process and are
left in the actual linearization because they are used as input to the GF smart paradigms.

DataPaintingCnc

lincat

Title, Museum = Str ;

Painter = {long,short : Str} ;

MGothenburg_City_Museum = "Gothenburg_City_Museum" ;

MMus_e_du_Louvre = "Musée_du_Louvre" ;

TGuernica__28painting_29 = "Guernica" ;

PRembrandt_Harmenszoon_van_Rijn =

mkPainter "Rembrandt_Harmenszoon_van_Rijn" "Rijn" ;

DataPainting{LANG} contains some of the translated name-entities, see Section 3.2,
mainly comprasing museum names.

DataPainting{LANG}

lincat Museum = NP ;

Swe.

MGothenburg_City_Museum = mkMuseum "Göteborgs stadsmuseum" ;

MMus_e_du_Louvre = mkMuseum "Louvren" ;

Ita.

MGothenburg_City_Museum = mkMuseum "museo municipale di Goteburgo" ;

MMus_e_du_Louvre = mkMuseum "Museo del Louvre" ;

6

Fre.

MGothenburg_City_Museum = mkMuseum "musée municipal de Göteborg" ;

MMus_e_du_Louvre = mkMuseum "Musée du Louvre" ;

Cat.

MGothenburg_City_Museum = mkMuseum "Gothenburg_City_Museum" ;

MMus_e_du_Louvre = mkMuseum "Museu del Louvre" ;

Ger.

MGothenburg_City_Museum = mkMuseum "Gothenburg_City_Museum" ;

MMus_e_du_Louvre = mkMuseum "Der Louvre " ;

The majority of languages linearize the museum name entities with an NP without a
gender. They are constructed by the function mkMuseum.

mkMuseum : Str -> NP = \s -> mkNP (mkPN s) ;

A special case of mkMuseum appears in four languages: Italian, Catalan, Spanish and
French, where a masculine gender is assigned to the museum string to get the correct form
of the string.

mkMuseum : Str -> NP = \s -> mkNP the_Det (mkN s masculine) ;

In Finnish, a smart paradigm is used to constructed the correct form of the museum
string.

mkMuseum : Str -> NP = \s -> case last s of {

"e" => mkNP (mkPN (mkN s (s + "n") (s + "ja"))) ;

"n" | "s" => mkNP (mkPN (mkN s (s + "in") (s + "eja"))) ;

_ => mkNP (mkPN (mkN s))

} ;

2.3 Answer Grammar

The answer grammar has been developed to generate yes/no answers or a coherent text as
a response to a query. It is the top module, with both questions and answers, including
texts. It contains the following functions.

fun

AAnswer : Answer -> Anything ;

AMove : Move -> Anything ;

AYes, ANo : Answer ;

ADescription : Description -> Answer ;

7

Linearizations of these functions look similar for all languages.

lin

AYes = mkText yes_Utt ;

ANo = mkText no_Utt ;

ADescription d = d ;

2.4 Query Grammar

The approach presented here relies on the assumption that an ontology restricts the number
of semantic queries that can be run against it, as it represents a closed world bound by
the concepts and properties that are included in it. An ontology has a logically organized
structure that semantically characterizes the domain. This allows formulating a controlled
language that will exhaustively cover all possible conceptual semantic queries.

The approach to queries is that the abstract syntax is driven by the ontology and
the concrete syntax by the resource grammars. There is a query form for everything the
ontology can provide answers to. Part of the abstract syntax is generic (such as wh-
questions and quantifiers), the other part, the predicates are domain-dependent. In the
same way, part of the concrete syntax is language dependent and language independent.

The query grammar builds on Yet Anothe Query Language (YAQL), a grammar that
has been developed in workpackage 4. It supports wh-questions, quantifiers, questions,
assertions, one/two place predicates, and question adverb/noun phrases.

QPainter : Painting -> Query ; -- who painted x

PPainter : Painter -> Property ; -- x is by Picasso

MQuery : Query -> Move ; -- what is the material of x

Its lexical entries, e.g wood, canvas, oil painting, etc, come from the module Lexicon-
Painting. Title, painter and museum names come from the automatically generated module
DataPainting. Some examples of the queries that can be formulated with this grammar
are:

• All About X, Show everything about X
• How many X
• Who is X, What is X
• Some X
• All X painted by Y
• Some X painted on Y
• What is the material of X
• Show everything about all X that are painted on Y
• X is by Y
• X is made of Y

8

2.4.1 YAQL Grammar

The YAQL grammar is an implementation result that grow out of experiences gained from
designing query grammars for previous workpackages. Its main features are:

• a common architecture with base module + domain
• straightforward abstract syntax generation from ontology, with just the minimum of

lexical types

– Kind – usually CN
– Entity – usually NP
– Property – can be VP, AP, ClSlash
– Relation – VPSlash built from V2, AP, comparatives

• all kinds of queries, from which applications can select a subset

The generic grammar structure allows it to be reused by any modules for any domain.
Kind is loosely coupled with the OWL Entities.

2.4.2 SPARQL Grammar

In the context of the Semantic Web, semantic data is accessible via the SPARQL endpoint,2

as in our Museum Reason-able View of Linked Open Data (LOD) [7]. One of the bottle-
necks of SPARQL is that formulating a query requires knowledge of the query language
and of the schemata underlying the datasets in the knowledge representation infrastruc-
ture. To avoid this, natural language/controlled natural language mechanism could be
used to help the user formulate queries by suggesting the valid words. These words are in
fact the lexicalizations of the concepts and properties that are available in the knowledge
representation infrastructure.

The SPARQL grammar that consists of several modules: YAQL1SPARQL, Query-
PaintingSPARQL, LexiconPaintingSPARQL and DataPaintingSPARQL, was developed to
provide exactly this functionality. The grammar builds on existing categories and functions
to allow formulating NL queries that are in turn being translated into a single SPARQL
query. The grammar has been developed on top of YAQL, hence, all of the natural language
sentences that are supported by the query grammar, and that are listed in the beginning
of this section (Section 2.4) are defined in the SPARQL grammar. It uses the same lexicon
and data sets that have been mapped from the ontology and linearized with corresponding
language strings.

To allow translation to SPARQL some extensions were required. For example, the
category Query has defined with three parameters to support queries of type MQuery :

Query = {wh1 : Str ; wh2 : Str ; prop : Str} ;

Each category is linearized with a different string depending on the category in question.

2http://museum.ontotext.com/sparql

9

QMaterial p =

{wh1= "?material"; prop = p; wh2=" painting:hasMaterial ?material ." };

QMuseum p =

{wh1= "?museum"; prop = p; wh2=" painting:hasCurrentLocation ?museum ."};

QPainter p =

{wh1= "?painter"; prop = p; wh2=" painting:createdBy ?painter ."};

The prop category is generated from the module DataPaintingSPARQL and is con-
structed with the appropriated SPARQL sub-strings.

lin PTitle t = "FILTER (regex(?title,"++ t ++",\"i\"))"

++ "$n" ++ "FILTER (lang(?title) = ’en’) " ;

Query parameters are then used to generate structured SPARQL strings using simple
concatenating.

MQuery q = "PREFIX painting:

<http://spraakbanken.gu.se/rdf/owl/painting.owl#> $n

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> $n

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> $n

SELECT distinct"++ q.wh1 ++ "$n WHERE { $n

?painting rdf:type painting:Painting; $n

rdfs:label ?title; $n " ++ q.wh2 ++ "$n" ++ q.prop++"}" ;

Some examples of SPARQL generations are:3

QueryPainting: MQuery (QColour (PTitle TMonaLisa jpg))
QueryPaintingEng: what are the colours of Mona Lisa
QueryPaintingSPARQL:

PREFIX painting: <http://spraakbanken.gu.se/rdf/owl/painting.owl#> $n

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> $n

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> $n

SELECT distinct ?color $n

WHERE { $n ?painting rdf:type painting:Painting . $n

?painting rdfs:label ?title

FILTER (str(?title)= "Mona_Lisa") .

$n ?painting painting:hasColor ?color . }

QueryPainting: MQuery (QMaterial (PTitle TMonaLisa jpg))
QueryPaintingEng: what is the material of Mona Lisa
QueryPaintingSPARQL:

3The $n stands for new line identifier for the backend to post-process.

10

PREFIX painting: <http://spraakbanken.gu.se/rdf/owl/painting.owl#> $n

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> $n

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> $n

SELECT distinct ?material $n

WHERE { $n ?painting rdf:type painting:Painting . $n

?painting rdfs:label ?title

FILTER (str(?title)= "Mona_Lisa") . $n

?painting painting:hasMaterial ?material . }

2.5 Text Grammar

From the knowledge representation infrastructure a set of RDF triples are returned as
results from a SPARQL query (see examples in Section 4). Our text grammar has been
designed to generate a coherent natural language descriptions from a selected set of the
returned triples. More specifically, our grammar covers eight concepts that are most com-
monly used to describe a painting, including: Title, Painter, Painting type, Material,
Colour, Year, Museum and Size. The corresponding ontology concepts are listed in Ta-
ble 1. In the Text Grammar they are defined as categories and are captured in one function
DPainting which has the following representation in the abstract syntax.4

DPainting :

Painting -> Painter -> PaintingType ->

OptColours -> OptSize -> OptMaterial ->

OptYear -> OptMuseum -> Description ;

In the function DPainting five arguments have been implemented as optional, i.e. Opt-
Colour, OptSize, OptMaterial, OptYear and OptMuseum. Each of these categories can be
left out in a text. Some examples from the abstract and the concrete syntaxes illustrate
how they are implemented:

MkYear : Year -> OptYear ;

MkMuseum : Museum -> OptMuseum ;

MkSize : Size -> OptSize ;

MkMaterial : Material -> OptMaterial ;

Dut.

MkYear year = mkOptAdv year ;

MkMuseum museum = mkOptAdv (SyntaxDut.mkAdv at_Prep (museum)) ;

MkSize size = mkOptAdv (SyntaxDut.mkAdv (mkPrep []) size) ;

MkMaterial material = mkOptAdv (SyntaxDut.mkAdv on_Prep material) ;

4The category Painting actually represents the title of the painting.

11

Table 1: Examples of the ontology concepts and properties covered in the grammar.

GF category Ontology concept Ontology property statement
PTPainting Painting SubClassOf:Artwork

createdBy:Painter
hasCreationDate:TimePeriod
hasMaterial:Material
hasTitle:Title
hasDimension:Dimension
hasCurrentLocation:Museum
hasColor:Color

Painter Painter SubClassOf:Human
Year TimePeriod fromTimePeriodValue:Value

toTimePeriodValue:Value
Material Material sameAs:E57 Material
Title Title sameAs:E35 Title
Size Dimension hasMeasure:Measure

hasUnitOfMeasure:UnitOfMeasure
Museum Museum SubClassOf:Building

Eng.

MkYear year = mkOptAdv year ;

MkMuseum museum = mkOptAdv (SyntaxEng.mkAdv at_Prep museum) ;

MkSize size = mkOptAdv (SyntaxEng.mkAdv part_Prep

(mkNP (mkCN size_N size))) ;

MkMaterial material = mkOptAdv (SyntaxEng.mkAdv on_Prep material) ;

Fin.

MkYear year = mkOptAdv year ;

MkMuseum museum = mkOptAdv (SyntaxFin.mkAdv in_Prep museum) ;

MkSize size = mkOptAdv (SyntaxFin.mkAdv part_Prep size) ;

MkMaterial material = mkOptAdv (SyntaxFin.mkAdv for_Prep material) ;

Fre.

MkYear year = mkOptAdv year ;

MkMuseum museum = mkOptAdv (SyntaxFre.mkAdv dative museum) ;

MkSize size = mkOptAdv (SyntaxFre.mkAdv part_Prep size) ;

MkMaterial material = mkOptAdv (SyntaxFre.mkAdv on_Prep material) ;

Ita.

MkYear year = mkOptAdv year ;

12

MkMuseum museum = mkOptAdv (SyntaxIta.mkAdv dative museum) ;

MkSize size = mkOptAdv (SyntaxIta.mkAdv part_Prep size) ;

MkMaterial material = mkOptAdv (SyntaxIta.mkAdv on_Prep material) ;

Ger.

MkYear year = mkOptAdv year ;

MkMuseum museum = mkOptAdv (SyntaxGer.mkAdv at_Prep museum) ;

MkSize size = mkOptAdv (SyntaxGer.mkAdv (mkPrep [] nominative) size) ;

MkMaterial material = mkOptAdv (SyntaxGer.mkAdv on_Prep material) ;

With this approach, different texts can be generated, depending on the information
that is available in the ontology. A minimal description consists of a title, a painter and a
painting type. This approach allows for efficient multilingual linearizations [9], as opposed
to the previous one [13], where semantic patterns were defined with different functions and
thus required an extensive linguistic effort to linearize. Below follow some examples of
texts generated in English to exemplify the different descriptions we are able to generate
from one single function call with a varying number of instantiated parameters.

• Interior was painted on canvas by Edgar Degas in 1868. It measures 81 by 114 cm
and it is painted in red and white. This painting is displayed at the Philadelphia
Museum of Art.

• Interior was painted by Edgar Degas in 1868. It measures 81 by 114 cm. This
painting is displayed at the Philadelphia Museum of Art.

• Interior was painted on canvas by Edgar Degas in 1868. It is painted in red and
white. This painting is displayed at the Philadelphia Museum of Art.

• Interior was painted by Edgar Degas. It measures 81 by 114 cm and it is painted in
red and white. This painting is displayed at the Philadelphia Museum of Art.

• Interior was painted on canvas by Edgar Degas. It measures 81 by 114 cm and it is
painted in red and white.

• Interior was painted by Edgar Degas in 1868. This painting is displayed at the
Philadelphia Museum of Art.

• Interior was painted by Edgar Degas.

The design of the text grammar is similar to the query grammar, i.e. the abstract
syntax is driven by the ontology and is language independent. The concrete syntax is
both language dependent and language independent. The language dependent part is the
choice of the main verbs, tenses and phrases. The language independent part relates to
how we package semantic concepts. In the current implementation we limited the length
of a description to three sentences. The examples from the concrete syntaxes below show
how the first sentence of a text decription (s1) is linearized in the different languages.

13

Bul. s1 : Text = mkText (mkS (mkCl painting (mkVP (mkVP (mkVP

(passiveVP paint_V2) material.s) (SyntaxBul.mkAdv from_Prep

(title painter.long))) year.s))) ;

Eng. s1 : Text = mkText (mkS pastTense (mkCl painting (mkVP (mkVP (mkVP

(passiveVP paint_V2) material.s)(SyntaxEng.mkAdv by8agent_Prep

(title painter.long))) year.s))) ;

Fin. s1 : Text = mkText (S_OVS noPart (mkTemp presentTense anteriorAnt)

positivePol (PredClPlus (title painter.long) (mkVP (mkVP (mkVP

paint_V2 (mkNP (mkCN paintingtype painting))) material.s) year.s))) ;

Swe. s1 : Text = mkText (mkS pastTense mkCl painting (mkVP (mkVP (mkVP

(PassV2 paint_V2) material.s) (SyntaxSwe.mkAdv by8agent_Prep

(title painter.long))) year.s))) ;

Ita. s1 : Text = mkText (mkS (mkCl painting (mkVP (mkVP (mkVP

(mkVP dipinto_A) material.s) (SyntaxIta.mkAdv by8agent_Prep

(title painter.long))) year.s))) ;

Fre. s1 : Text = mkText (mkS anteriorAnt (mkCl painting (mkVP (mkVP (mkVP

(passiveVP paint_V2) material.s) (SyntaxFre.mkAdv by8agent_Prep

(title painter.long))) year.s))) ;

Ger. s1 : Text = mkText (mkS pastTense (mkCl painting (mkVP (mkVP

(mkVP (passiveVP paint_V2) year.s) (SyntaxGer.mkAdv von_Prep

(title painter.long))) material.s))) ;

Rus. s1 : Text = mkText (mkS pastTense (mkCl painting (mkVP (mkVP (mkVP

(passiveVP paint_V2) (SyntaxRus.mkAdv part_Prep

(title painter.long masculine animate))) material.s) year.s))) ;

The above extracts from the concrete syntaxes show how we exploit RGL to linearize the
first sentence of a description. This sentence comprises four semantic categories. Some of
the distinguishing differences between the languages are: in Finnish the use of an active
voice, in Italian, present tense, in French, past participle. The order of the categories is
also different. In German the material string appears at the end of the sentence as opposed
to the other languages where year is often the last string. Examples of the multilingual
descriptions generated with these grammars are shown in Figure 1.

14

F
ig

u
re

1:
M

u
lt

il
in

gu
al

p
ai

n
ti

n
g

d
es

cr
ip

ti
on

s

15

3 The Data

The data we have been experimenting with to enable multilingual descriptions of mu-
seum objects and answering to queries over them is a subset of the Gothenburg City Mu-
seum (GCM) database,5 and a subset of the DBpedia dataset.6 These datasets have been
linked to the CIDOC-CRM [5] and the painting ontology [7]. A description of the trans-
formation and the processing of Gothenburg City Museum data can be found in [6, 7, 8].
The processing of the DBpedia data is described in the following section.

Both datasets have been added to the Museum of Linked Open Data. They are currently
part of the MOLTO knowledge infrastructure,7 and are accessible from the online retrieval
system which is described in Section 4.

The DBpedia Data

The DBpedia data was extracted from FactForge,8 a public service developed and main-
tained by Ontotext. It represents a Reason-able View of the web of data and contains a
segment of the Linked Open Data (LOD).9 The dataset contains several generic knowledge
sources including: Freebase,10 Geonames,11 Musicbrainz,12 Wordnet,13 CIA Factbook,14

Lingvoj,15 Lexvo,16 on which inference according to OWL-Horst is performed [28] (see
Section 4).

FactForge is also supplied with a reference layer, allowing efficient access and manage-
ment of the heterogeneous data, by using the light-weight upper-level ontology PROTON,17

to which the datasets of the LOD are mapped. FactForge has 15 billion RDF triples that
are available for retrieval. Our goal was to extract the paintings available in FactForge
along with the semantic information that was needed for the natural language description
generation, including the museum it belongs to, its author, its dimensions, its type (oil
painting, portrait, etc.), and the year it was created.

The above mentioned schemata do not have a Painting concept, therefore when re-
trieving the paintings from FactForge we had to analyze the information available for
several paintings, and to specify what graph pattern will reliably describe the paintings

5http://stadsmuseum.goteborg.se/wps/portal/stadsm/english
6http://dbpedia.org
7http://museum.ontotext.com
8http://factforge.net
9http://linkeddata.org

10http://www.freebase.com/
11http://www.geonames.org
12http://musicbrainz.org
13http://wordnet.princeton.edu/
14https://www.cia.gov/library/publications/the-world-factbook/
15http://www.lingvoj.org/
16http://www.lexvo.org/
17http://www.ontotext.com/proton-ontology

16

http://stadsmuseum.goteborg.se/wps/portal/stadsm/english
http://dbpedia.org
http://museum.ontotext.com
http://factforge.net
http://linkeddata.org
http://www.freebase.com/
http://www.geonames.org
http://musicbrainz.org
http://wordnet.princeton.edu/
https://www.cia.gov/library/publications/the-world-factbook/
http://www.lingvoj.org/
http://www.lexvo.org/
http://www.ontotext.com/proton-ontology

in the different datasets in FactForge. The analysis showed that the word ”paintings” ap-
peared in the comments about almost all painting objects. Thus, the formulated SPARQL
query was looking for an Artwork concept in general, based on the Freebase predicate
visual art.visual artist.artworks, and filtered out the paintings based on the mention of the
word painting in the object of the predicate rdfs:comment. The SPARQL query used to
retrieved the data is given bellow.

PREFIX fb: <http://rdf.freebase.com/ns/>

PREFIX dbpedia: <http://dbpedia.org/resource/>

PREFIX dbp-ont: <http://dbpedia.org/ontology/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX ff: <http://factforge.net/>

PREFIX painting: <http://spraakbanken.gu.se/rdf/owl/painting.owl#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX pext: <http://www.ontotext.com/proton/protonext#>

PREFIX ptop: <http://www.ontotext.com/proton/protontop#>

PREFIX edm: <http://www.europeana.eu/schemas/edm/>

PREFIX ore: <http://www.openarchives.org/ore/terms/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX dcterms: <http://purl.org/dc/terms/>

SELECT DISTINCT ?painting ?museum ?author ?height ?width ?title ?type ?year

WHERE {

?author1 fb:visual_art.visual_artist.artworks ?painting .

?author1 ff:preferredLabel ?author .

?painting ptop:isOwnedBy ?owner .

?owner ff:preferredLabel ?museum .

?painting rdfs:comment ?comment .

FILTER (regex(?comment, "painting"))

?painting dbp-prop:height ?height ;

dbp-prop:width ?width ;

dbp-prop:title ?title ;

dbp-prop:type ?type ;

dbp-prop:year ?year ;

}

With this query we retrieved over 44 thousand painting entities from the entire Fact-
Forge dataset. An extract of this data is shown in Figure 2.

The Forest platform which provides the Graphical User Interface (GUI) for both Fact-
Forge and MOLTO knowledge infrastructure allows the data to be presented in the user
interface, but also to be exported as JSON (JavaScript Object Notation) or XML (Ex-
tensible Markup Language format). The data exported in the XML format was used to

17

Figure 2: Data extracted from FactForge

produce the data pool to exemplify the grammar to ontology interoperability in the cul-
tural heritage domain that is presented in this deliverable. In the following section, we
provide a more detailed summary of our work with making the DBpedia data accessible
through the knowledge infrastructure and available in GF.

3.1 Creation of unified reference layer

In order to make the DBpedia data accessible through the MOLTO knowledge infrastruc-
ture, it required some preprocessing, cleaning, and mapping to the Painting ontology for
data consistency.18 This unification was needed to use a consistent SPARQL queries from
where NL descriptions could be generated.

Firstly, we attempted to clean data noise and results that would make a single painting
reappear in the query results. Then, we transformed year and size strings into only num-
bers. This was necessary because some year strings contained a mixture of literal and nu-
merical data, containing words with meanings such as around the year and approximately.
For each painter, museum and painting we had a single representation in the data. We used
a unified function that truncated Uniform Resource Identifiers (URIs) to unique identifiers
(IDs). For example, <http://dbpedia.org/resource/A Burial At Ornans> was truncated
to A Burial At Ornans, Salvador Daĺı became Salvador Dal . This ID was searched in the
rest of the data, to find unique paintings and unify them under the Painting ontology. For
different URIs pointing to the same painting, we used the owl:sameAs predicate to keep the
data linked in the other graphs in the LOD cloud. Example follows for A Burial At Ornans.

18svn://molto-project.eu/wp8/d8.3/painting.owl

18

svn://molto-project.eu/wp8/d8.3/painting.owl

Table 2: Internal data format

entry {
ident = “GSM940059Obj”,
title = return “Sigrid Heurlin”,
painter = return “Saga Wallin”,
ptype = [“oil painting”, “portrait”],
colour = [],
size = return “70 545”,
material = return “wood”,
year = return “1960”,
museum = return “Gothenburg City Museum”

}

<http://spraakbanken.gu.se/rdf/owl/painting.owl#A_Burial_At_Ornans>

owl:sameAs <http://dbpedia.org/resource/A_Burial_At_Ornans> .

<http://spraakbanken.gu.se/rdf/owl/painting.owl#A_Burial_At_Ornans>

owl:sameAs <http://mpii.de/yago/resource/A_Burial_At_Ornans> .

<http://spraakbanken.gu.se/rdf/owl/painting.owl#A_Burial_At_Ornans>

owl:sameAs

<http://www4.wiwiss.fu-berlin.de/flickrwrappr/photos/A_Burial_At_Ornans> .

A corresponding representations of titles in the abstract syntax is the following (see also
Section 2.2):

TA_Burial_At_Ornans : Title ;

The concrete syntaxes gave the RDF labels in different languges as representation of
the painting. Materials and painting types were extracted from painting’s text description
and normalized to the existing grammar types. Painters’ names were reverted; starting
with first- and ending with family- name.

3.2 The GF data

The same data that was retrieved from FactForge and the GCM that has been made
available through OWLIM (Section 4), has been made available in GF through an internal
database from where we automatically created the grammar (Section 2.2). An example of
how this data was presented locally in a Haskell database is given in Table 3.2.

There are 15350 entities represented in the above form in the GF database. These
correspond to approximately 153500 triples in the painting datasets, which are available
through the MOLTO knowledge infrastructure. The GF database covers 662 titles of
paintings, 116 painter-names and 104 museum-names.

19

Table 3: Translated museum names from Wikipedia

Bulgarian 26
Catalan 63
Danish 33
Dutch 81
Finnish 40
French 94
Hebrew 46
Italian 94
German 99
Norwegian 50
Romanian 27
Russian 87
Spanish 89
Swedish 58

The pre-processing of the data required cleaning of redundant identifiers, elimination of
entries that contained Chinese and other unsupported languages, replacement of dimension
triples with one string, and replacement of empty painter/artist names with the string
unknown.

The strings assigned to paining titles, painters and museum names are by default the
original strings as they appear in the data. However, because without translations of the
name entities the results can become artificial and for some languages ungrammatical, we
run a script that translates the museum name-entities from Wikipedia automatically. In
the cases where no translation was found, the original string, as it appears in the data
was used. From Wikipedia we extracted entity pairs. This was done by curling for Web
pages where a museum name appears and extracting translations from them. We first
extracted all the retrieved entities for each language. The lists of extracted pairs were
further reduced to remove duplicated and ambiguous entries. This process resulted in
lexPairs-LANG file for each language. When the grammar data DataGrammarLANG is
created, translations of museum-names are extracted from these files. Unfortunately, the
amount of the translated entities was not equal for all languages. The distribution of the
translated terms is given in Table 3

3.3 Challenges

The majority of the challenges in the production of the paintings data pool stemmed
from the very nature of Linked Open Data. The data in the LOD cloud are notoriously
noisy and inconsistent. The multilingual labels from the FactForge datasets and more
precisely from DBpedia, are not always available in all supported languages, and one can

20

discover mistakes in them. Another problem was that not all paintings or art objects are
uniformly described with the same set of characteristics. This resulted in the lack of some
information that we needed for the proper generation of the natural language descriptions
in the answers. For instance, some paintings were missing a title or a painter name. As
the GF grammars required this information in order to generate a description, we replaced
titles with id numbers and empty painter names with the string unknown or removed the
entry. Moreover, some of the paintings appeared twice in the result set retrieved by the
FactForge SPARQL query. This occurred because some of the predicates representing them
were presented with different strings and triggered two RDF triples. These repetitions were
identified and removed.

To summarize, although DBpedia in its large pool of data provides access to multilingual
content, it is inconsistent. Many of the entries it contains are missing translations. There
is a mixture of numeric and string literals. There are many duplications, most of them
occur because the same ID appears in different languages. The content of the data is
verbose, for example place-names and museum-names are represented with one string,
for example: “Rijksmuseum, Amsterdam”, instead of two different strings linked by two
separate concepts, i.e. Museum and Place. This kind of inconsistent data representation
made the translation of entries harder because there was no match of those strings in the
Wikipedia pages.

4 The retrieval system

The MOLTO cultural heritage retrieval system prototype is an overlay of the molto-web
generic project,19 that almost overlaps with the Knowledge Representation Infrastruc-
ture (KRI) prototype developed in WP4.20 Another overlay is molto-patents prototype.21

While researching for paintings data for the prototype, we found it necessary to ex-
periment with federated SPARQL queries, that retrieve data from remote SPARQL end
points. Hence, we migrated OWLIM 5,22 and Forest 1.4.23 As a result, federated SPARQL
queries were enabled and allowed exploring different remote or local sources of data from
DBpedia, GIM, and GSM.

OWLIM supports OWL Horst which is an extension of RDFs. It is based on ter Horst,
where he defines RDFs extensions toward rule support, describing a dialect of OWL, which
makes use of RDF rule entailment (R-entailment) [1]. Each rule has a set of premises, which
conjunctively defines the body of the rule. The premises are sequences of RDF statements,
where variables can take any of the three positions. The head of the rule also has one of

19svn://molto-project.eu/wp4/projects/molto-web
20http://molto.ontotext.com/
21http://molto-patents.ontotext.com/ developed in WP7.
22OWLIM (http://www.ontotext.com/owlim) is a commercial RDF database management system,

developed by Ontotext.
23Forest is a Web-based framework for management of RDF datastores and semantically annotated

documents, internal product of Ontotext.

21

svn://molto-project.eu/wp4/projects/molto-web
http://molto.ontotext.com/
http://molto-patents.ontotext.com/
http://www.ontotext.com/owlim

more consequences, also in the form of RDF statements binding variables from the premises.
Thus, OWL Horst language has the following characteristics which are supported by the
retrieval system:

1. It is a proper (backward compatible) extension of RDFs, which allows to use the
classes of RDFs with OWL Horst reasoning

2. It allows rule extensions without Description Logic (DL) related constraints, because
it is based on R-entailment formalism

3. Its complexity allows greater scalability compared to other approaches combining DL
ontologies with rules.

4.1 System workflow

The architecture of the system is shown on Figure 3. The retrieval workflow is described
in the current section.

First, the GUI suggests few possible queries to the user in their selected languge. Au-
tocomplete is available for all possible queries, including paintings, authors, museums,
materials, colours, painting types, etc. The user creates and submits a query. It is passed
to the Java backend, where a GF process is started (or already runs). It is a GF process for
the QueryPainting.pgf executable, which comprises of all query grammars, including the
SPARQL one. Consequently, through GF, the natural languge is translated to SPARQL.
An example of a call to GF is as follows:

14:39:11.425 [qtp1392834697-37] INFO c.o.m.r.ResultMappingMuseum

- write to GF:

p -lang=QueryPaintingSpa "mostra toda la informaci\’{o}n sobre todas las

pinturas al \’{o}leo" | l -lang=QueryPaintingSPARQL

The result is a SPARQL query that is executed over OWLIM from where a set of
triples is returned. For some queries that require a single word answer, text generation is
not supported yet. An example for such a scenario can be seen on Figures 7 and 8.

A more interesting use-case is when we request painting descriptions, for example with
a query like “show me everything about all portraits”. Then, the resulting SPARQL has
the following form:

PREFIX painting: <http://spraakbanken.gu.se/rdf/owl/painting.owl#>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT distinct ?painting ?title ?material ?author ?year ?length ?height

?color ?museum

WHERE { ?painting rdf:type painting:OilPainting ;

rdfs:label ?title ;

22

Figure 3: Natural languge-GF-SPARQL-RDF-Natural languge workflow

23

painting:createdBy ?author;

painting:hasMaterial ?material;

painting:hasCurrentLocation ?museum;

painting:hasCreationDate ?date;

painting:hasDimension ?dim .

?author rdfs:label ?painter .

?date painting:toTimePeriodValue ?year . ?dim painting:lengthValue ?length ;

painting:heightValue ?height . ?museum rdfs:label ?loc .

} LIMIT 200

A naming convention for the query parameters is used in order to retrieve all entities
from the resulting bindings. Queries that will result in a coherent description contain the
following parameter names: ?painting ?title ?material ?author ?year ?length ?height ?color
?museum. Mapping all data to one multi-layered ontology [2], in our case the Painting
ontology, allows this consistency. Each returned binding of the above parameters is turned
from an URI string value to a parameter in the GF abstract syntax. For example:

?museum = <http://spraakbanken.gu.se/rdf/owl/painting.owl#

Derby_Museum_and_Art_Gallery>

is translated to

MDerby_Museum_and_Art_Gallery

Optimally, we use the same code for stripping URI to GF entity name (painter, painting,
museum) in the call to and from GF using the data from the RDF results. We perform
this similar conversion for the bindings whose data is an URI containing the strings: ?title
?material ?author ?color ?museum. Next, we form an abstract syntax tree representation
that is send to GF for generating a painting description. For example, to get a Spanish
translation a request would look like:

l -unlextext -lang="TextPaintingSpa" DPainting

(PTitle TA_Philosopher_Lecturing_on_the_Orrery) PJoseph_Wright

NoPaintingType NoColours (MkSize (SIntInt 203 147)) (MkMaterial MCanvas)

(MkYear (YInt 1990)) (MkMuseum MDerby_Museum_and_Art_Gallery)

We have a second GF process that we run in the backend. This process runs the
TextPainting.pgf executable and returns painting descriptions. This way, we describe every
painting with a single call to the DPainting function as described in Section 2.5. Examples
of the retrieved entities and their natural language descriptions are shown in Figure 4.

24

F
ig

u
re

4:
R

es
u
lt

s
in

S
p
an

is
h

to
-

”m
os

tr
a

to
d
a

la
in

fo
rm

ac
ió

n
so

b
re

to
d
as

la
s

p
in

tu
ra

s
al

ól
eo

”(
“s

h
ow

m
e

ev
er

y
th

in
g

ab
ou

t
al

l
oi

l
p
ai

n
ti

n
gs

”)

25

4.2 Multilingual interface

It was a challenge to process NL queries and answers in the form of coherent painting
descriptions in 15 natural languges and also SPARQL. We experienced the usual encoding
issues, such as conversion to utf-8, both on frontend and backend side, for example in
tomcat settings,24 and data preprocessing and processing. We also had to deal with some
NL-to-SPARQL generation obstacles that were due to the novelty nature of the SPARQL
generation approach. For example, it was very important to concatenate strings in a certain
order and with the right syntax, i.e. end of a triple with a full stop, separate a sequence
of categories with semi columns, etc.

4.2.1 NL queries user interface

The system supports queries in 12 natural languages: Bulgarian, Catalan, Dutch, English,
Finnish, French, German, Italian, Romanian, Russian, Spanish and Swedish. Painting
descriptions are also available in Danish, Hebrew and Norwegian. Some of the currently
supported user interface (UI) sample queries are the corresponding ones of those shown in
Figure 5.

Figure 5: Example queries in English with autocomplete

Two examples of search queries and answers from the Spanish and the Bulgarian in-
terfaces can be seen in Figures 4, 6 and 7, 8. When inspecting the Spanish answer in
Figure 4, we discover that on the reply, we find both painting descriptions for each row
of the result of the query and the table of semantic data results. The top seven resulting
painting descriptions are listed below.

24http://tomcat.apache.org/

26

http://tomcat.apache.org/

Figure 6: Example query in spanish – “mostra toda la información sobre todas las pinturas
al óle”(“show me everything about all oil paintings”)

1. Diana and Actaeon está pintado sobre lienzo por Titian en 1556. Mide 202 por 185
cm. Esta pintura está exponida en el Sutherland, Francis Egerton, 7th Duke of.

2. Christ in the House of Martha and Mary está pintado sobre lienzo por Diego Ve-
lazquez en 1618. Mide 104 por 63 cm. Esta pintura está exponida en el National
Gallery de Londres.

3. Belisarius Begging for Alms está pintado sobre lienzo por Jacques-Louis David en
1781. Mide 312 por 288 cm. Esta pintura está exponida en el Palais des Beaux-Arts
de Lille.

4. A Philosopher Lecturing on the Orrery está pintado sobre lienzo por Joseph Wright
en 1991. Mide 203 por 147 cm. Esta pintura está exponida en el Derby Museum and
Art Gallery.

5. The Coronation of the Virgin está pintado sobre lienzo por Diego Velazquez en 1644.
Mide 124 por 176 cm. Esta pintura está exponida en el Museo del Prado.

6. An Experiment on a Bird in the Air Pump está pintado sobre lienzo por Joseph Wright
en 1768. Mide 244 por 183 cm. Esta pintura está exponida en el National Gallery
de Londres.

27

7. Bathsheba at Her Bath está pintado sobre lienzo por Rembrandt Harmenszoon van
Rijn en 1654. Mide 142 por 142 cm. Esta pintura está exponida en el Museo del
Louvre.

Figure 7: Example query in Bulgarian, asking on “where is Cutting the Stone displayed”

The answer to the query taken from the Bulgarian example, Figures 7 and 8, reveals
there is only one triple returned. It can be explored further through the RDF end-point.

Figure 8: Answer for “where is Cutting the Stone displayed”

4.2.2 RDF browsing view

The prototype allows exploring RDF graphs by providing actual links to each entity in the
graph. It also shows the participants in the triples where the entity is respectively one of
the following: (1) object, (2) predicate, (3) object.

28

Figure 9: View of RDF facts where “Museo del Prado” is an object

In a continuation of the search of the example given in Figure 8, we can see all RDF
triples, in which “Museo del Prado” is an “object” as illustrated in Figure 9. All the listed
objects are related to this museum through the relating predicate hasCurrentLocation. We
can also further explore each of them separately.

Figure 10: SPARQL view

29

4.2.3 SPARQL endpoint

Finally, our prototype provides a public SPARQL endpoint, against which one could explore
the knowledge base with manually written SPARQL queries. In Figure 10 we see the
resulting query of the natural languge question from Figure 7. It was retrieved by the link
to “SPARQL Query” that is visible in Figure 8.

5 Conclusions

We present an ontology-based multilingual application grammar developed in the Gram-
matical Framework and a cross-language retrieval system that uses this grammar for gen-
erating museum object descriptions in the Semantic Web.

The presented application covers semantic data from the Gothenburg City Museum
database and DBpedia. The grammar enables descriptions of paintings and answering to
queries over them, covering 15 languages for baseline functionality.

We described as well a prototype of a cross-language retrieval and representation system
that has been tested with the same data, using tools from WP4 and WP7.

30

References

[1] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-
Schneider, P. F., Eds. The Description Logic Handbook: Theory, Implementation,
and Applications (2003), Cambridge University Press.

[2] Bouayad-Agha, N., Casamayor, G., Mille, S., Rospocher, M., Saggion,
H., Serafini, L., and Wanner, L. From Ontology to NL: Generation of multi-
lingual user-oriented environmental reports. Lecture Notes in Computer Science 7337
(2012).

[3] Brickley, D., and Guha, R. RDF Vocabulary Description Language 1.0: RDF
Schema. W3C, 2004. http://www.w3.org/TR/rdf-schema/.

[4] Cimiano, P., Buitelaar, P., McCrae, J., and Sintek, M. LexInfo: A declara-
tive model for the lexicon-ontology interface. Web Semantics 9 (March 2011), 29–51.

[5] Crofts, N., Doerr, M., Gill, T., Stead, S., and Stiff, M. Definition of the
CIDOC Conceptual Reference Model, 2008.

[6] Damova, M. Data Models and Alignment, May 2011. Deliverable 4.2. MOLTO
FP7-ICT-247914.

[7] Damova, M., and Dannélls, D. Reason-able View of Linked Data for cultural
heritage. In Proceedings of the third International Conference on Software, Services
and Semantic Technologies (S3T) (2011).

[8] Dannélls, D. D.8.1 Ontology and corpus study of the cultural heritage domain, 2011.
Deliverable of EU Project MOLTO Multilingual Online Translation.

[9] Dannélls, D. Multilingual text generation from structured formal representations.
PhD thesis, Department of Swedish, University of Gothenburg, Gothenburg, Sweden,
2012.

[10] Dannélls, D. On generating coherent multilingual descriptions of museum objects
from semantic web ontologies. In Proceedings of the Seventh International Natural
Language Generation Conference (INLG 2012) (Utica, IL, May 2012), Association for
Computational Linguistics, pp. 76–84.

[11] Dannélls, D., Ranta, A., and Enache, R. D.8.2 Multilingual grammar for
museum object descriptions, 2012. Deliverable of EU Project MOLTO Multilingual
Online Translation.

[12] Dannélls, D., Damova, M., Enache, R., and Chechev, M. A Framework for
Improved Access to Museum Databases in the Semantic Web. In Recent Advances in
Natural Language Processing (RANLP). Language Technologies for Digital Humani-
ties and Cultural Heritage (LaTeCH) (2011).

31

http://www.w3.org/TR/rdf-schema/

[13] Dannélls, D., Damova, M., Enache, R., and Chechev, M. Multilingual
online generation from semantic web ontologies. In Proceedings of the World Wide
Web Conference (WWW2012) (Lyon, France, 2012).

[14] Davies, R. EuropeanaLocal – its role in improving access to Europe’s cultural her-
itage through the European digital library. In Proceedings of IACH workshop at
ECDL2009 (European Conference on Digital Libraries) (Aarhus, September 2009).

[15] Dekkers, M., Gradmann, S., and Meghini, C. Europeana Outline Functional
Specification for development of an operational European Digital Library, 2009. Euro-
peana Thematic Network Deliverable 2.5.

[16] Doerr, M., Gradmann, S., Hennicke, S., Isaac, A., Meghini, C., and
van de Sompel, H. The Europeana Data Model (EDM). In WORLD LIBRARY
AND INFORMATION CONGRESS: 76TH IFLA GENERAL CONFERENCE AND
ASSEMBLY 10-15 August 2010, Gothenburg, Sweden (Aug. 2010).

[17] Ferré, S. SQUALL: A controlled natural language for querying and updating RDF
graphs. In CNL (2012), pp. 11–25.

[18] Garlik, S. H., and Andy, S. SPARQL 1.1 Query Language, March 2013. W3C
Recommendation.

[19] Group, W. O. W. OWL Web Ontology Language Overview, December 2012. W3C
Recommendation.

[20] Hirst, G. Ontology and the lexicon. Springer Verlag, Berlin Germany, 2004.

[21] Lassila, O., and Swick, R. R. Resource Description Framework (RDF). Model
and Syntax Specification, 2 1999.

[22] McCrae, J., de Cea, G. A., Buitelaar, P., Cimiano, P., Declerck, T.,
Gómez-Pérez, A., Gracia, J., Hollink, L., Montiel-Ponsoda, E., Spohr,
D., and Wunner, T. Interchanging lexical resources on the Semantic Web. Language
Resources and Evaluation 46, 4 (2012), 701–719.

[23] Ore, C.-E. S. The norwegian museum project, access to and interconnection between
various resources of cultural and natural history. In European Conference on Research
and Advanced Technology for Digital Libraries ECDL (2001).

[24] Ranta, A. Grammatical Framework, a type-theoretical grammar formalism. Journal
of Functional Programming 14, 2 (2004), 145–189.

[25] Ranta, A. The GF resource grammar library. The on-line journal Linguistics in
Language Technology (LiLT) 2, 2 (2009).

32

[26] Ranta, A. Grammatical Framework: Programming with Multilingual Grammars.
CSLI Studies in Computational Linguistics. CSLI, Stanford, 2011.

[27] Schalley, A. C., and Zaefferer, D., Eds. Ontolinguistics. Trends in Linguistics.
Studies and Monographs. Mouton de Gruyter, Berlin, 2007.

[28] ter Horst, H. J. Combining RDF and Part of OWL with Rules: Semantics,
Decidability, Complexity. In Proceedings of The Semantic Web ISWC (Heidelberg,
2005), vol. 3729 of LNCS, Springer Berlin, pp. 668–684.

[29] Unger, C., and Cimiano, P. Pythia: Compositional meaning construction for
ontology-based question answering on the Semantic Web. In Natural Language Pro-
cessing and Information Systems - 16th International Conference on Applications of
Natural Language to Information Systems, NLDB 2011, Alicante, Spain, June 28-30,
2011. Proceedings (2011), vol. 6716 of Lecture Notes in Computer Science, Springer,
pp. 153–160.

33

34

	Introduction
	The GF application grammar
	Lexicon Grammar
	Data Grammar
	Answer Grammar
	Query Grammar
	YAQL Grammar
	SPARQL Grammar

	Text Grammar

	The Data
	Creation of unified reference layer
	The GF data
	Challenges

	The retrieval system
	System workflow
	Multilingual interface
	NL queries user interface
	RDF browsing view
	SPARQL endpoint

	Conclusions
	References

