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Difficulties of MT Evaluation

Machine Translation is an open NLP task

→ the correct translation is not unique
→ the set of valid translations is not small
→ the quality of a translation is a fuzzy concept

Quality aspects are heterogeneous

→ Adequacy (or Fidelity)
→ Fluency (or Intelligibility)
→ Post-editing effort (time, key strokes, ...)
→ ...
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Manual vs. Automatic Evaluation

MT Manual Evaluation

Many protocols for manual evaluation exist

ARPA’s Approach (since 90’s):

Adequacy (fidelity) and Fluency (intelligibility).

Score Adequacy Fluency

5 All information Flawless English
4 Most Good
3 Much Non-native
2 Little Disfluent
1 None Incomprehensible
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Pros and Cons of Manual Evaluation

Advantages Disadvantages

Direct interpretation
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Pros and Cons of Manual Evaluation

Advantages Disadvantages

Direct interpretation Time cost
Money cost
Subjectivity
Non-reusability
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MT Automatic Evaluation

→ Compute similarity between system’s output and one
or several reference translations

→ Lexical similarity as a measure of quality
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MT Automatic Evaluation

→ Compute similarity between system’s output and one
or several reference translations

→ Lexical similarity as a measure of quality

Edit Distance
WER, PER, TER

Precision
BLEU, NIST, WNM

Recall
ROUGE, CDER

Precision/Recall
GTM, METEOR, BLANC, SIA

BLEU has been
widely accepted as a
‘de facto’ standard



IBM BLEU metric

BLEU: a Method for Automatic Evaluation of Machine Translation

Kishore Papineni, Salim Roukos, Todd Ward, Wei-Jing Zhu

IBM Research Division

“The main idea is to use a weighted average of variable length phrase

matches against the reference translations. This view gives rise to a

family of metrics using various weighting schemes. We have selected

a promising baseline metric from this family.”
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Modified n-gram precision (1-gram)

A reference word should only be matched once.

Algorithm:

1 Count number of times wi occurs in each reference.

2 Keep the minimun between the maximum of (1) and the
number of times wi appears in the candidate (clipping).

3 Add these values and divide by candidate’s number of words.
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Modified n-gram precision

Straightforward generalisation to n-grams, Pn.

Generalisation to multiple sentences:

Pn =

∑

C∈{candidates}

∑

ngram∈C Countclipped(ngram)
∑

C∈{candidates}

∑

ngram∈C Count(ngram)

low n
adequacy

high n
fluency



IBM BLEU: Papineni, Roukos, Ward and Zhu [2001]

BiLingual Evaluation Understudy, BLEU

BLEU = BP· exp
(

∑N
n=1 wn log Pn

)

Geometric average of Pn (empirical suggestion).

wn positive weights summing to one.

Brevity penalty.



IBM BLEU: Papineni, Roukos, Ward and Zhu [2001]

Paper’s Conclusions

BLEU correlates with human judgements.

It can distinguish among similar systems.

Need for multiple references or a big test with heterogeneous
references.

More parametrisation in the future.
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Benefits of Automatic Evaluation

Automatic evaluations are:

1 Cheap (vs. costly)
2 Objective (vs. subjective)
3 Reusable (vs. not-reusable)

Automatic evaluation metrics have notably accelerated the
development cycle of MT systems.

1 Error analysis
2 System optimization
3 System comparison
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Risks of Automatic Evaluation

1 System overtuning → when system parameters are adjusted
towards a given metric

2 Blind system development → when metrics are unable to
capture system improvements (e.g., JHU’03)

3 Unfair system comparisons → when metrics are unable to
reflect difference in quality between MT systems
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Problems of Lexical Similarity Measures

NIST 2005 Arabic-to-English Exercise [CBOK06, KM06]
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Problems of Lexical Similarity Measures

NIST 2005 Arabic-to-English Exercise [CBOK06, KM06]

−→ N-gram based metrics favor MT systems which closely
replicate the lexical realization of the references

−→ Test sets tend to be similar (domain, register, sublanguage) to
training materials

−→ Statistical MT systems heavily rely on the training data

−→ Statistical MT systems tend to share the reference
sublanguage and be favored by N-gram based measures
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Problems of Lexical Similarity Measures

NIST 2005 Arabic-to-English Exercise
Sentence #498

Automatic On Tuesday several missiles and mortar
Translation shells fell in southern Israel , but there
(LinearB) were no casualties .

Reference Several Qassam rockets and mortar shells
Translation fell today, Tuesday , in southern Israel

without causing any casualties .

Only one 4-gram in common!
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The Limits of Lexical Similarity

The reliability of lexical metrics depends very strongly on the
heterogeneity/representativity of reference translations.

Culy and Riehemann [CR03]

Coughlin [Cou03]

Underlying Cause

Lexical similarity is nor a sufficient neither a necessary condition so
that two sentences convey the same meaning.
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Extending Lexical Similarity Measures

Increase robustness (avoid sparsity):

Lexical variants

→ Morphological variations (i.e., stemming)
ROUGE and METEOR

→ Synonymy lookup: METEOR (based on WordNet)

Paraphrasing support:

→ Zhou et al. [ZLH06]

→ Kauchak and Barzilay [KB06]

→ Owczarzak et al. [OGGW06]
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Similarity Measures Based on Linguistic Features

Syntactic Similarity
→ Shallow Parsing

Popovic and Ney [PN07]
Giménez and Màrquez [GM07]

→ Constituency Parsing

Liu and Gildea [LG05]
Giménez and Màrquez [GM07]

→ Dependency Parsing

Liu and Gildea[LG05]
Amigó et al. [AGGM06]
Mehay and Brew [MB07]
Owczarzak et al. [OvGW07a, OvGW07b]
Kahn et al. [KSO09]
Chan and Ng [CN08]
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Similarity Measures Based on Linguistic Features

Semantic Similarity
→ Named Entities

Reeder et al. [RMDW01]
Giménez and Màrquez [GM07]

→ Semantic Roles

Giménez and Màrquez [GM07]

→ Textual Entailment

Padó et al. [PCGJM09]

→ Discourse Representations

Giménez and Màrquez [GM09]
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Our Approach (Giménez & Màrquez, 2010)

Rather than comparing sentences at lexical level:

Compare the linguistic structures and the words within them
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Our Approach

Automatic On Tuesday several missiles and mortar
Translation shells fell in southern Israel , but there

were no casualties .

Reference Several Qassam rockets and mortar shells
Translation fell today, Tuesday , in southern Israel

without causing any casualties .
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Our Approach

S

PP TMP1 S .

On NP NP A11 VP , but S

Tuesday several

missiles and

mortar shells

<fell>1 PP LOC1 NP VP

in NP there were NP

southern Israel no casualties
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Our Approach
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Measuring Structural Similarity

Linguistic element (LE) = abstract reference to any possible
type of linguistic unit, structure, or relationship among them

For instance: POS tags, word lemmas, NPs, syntactic phrases

A sentence can be seen as a bag (or a sequence) of LEs of a
certain type

LEs may embed

Generic Similarity measure among LEs: OVERLAP
Inspired by the Jaccard similarity coefficient

Precision/Recall/F1 can also be used
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Overlap among Linguistic Elements

O(t) =

∑

i∈(itemst(hyp) ∩ itemst(ref))

counthyp(i , t)

∑

i∈(itemst(hyp) ∪ itemst(ref))

max(counthyp(i , t), countref(i , t))

t is the LE type
‘hyp’: hypothesized translation
‘ref’: reference translation
itemst(s): set of items occurring inside LEs of type t
counts(i , t): occurrences of item i in s inside a LE of type t
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Overlap among Linguistic Elements

Coarser variant: micro-averaged overlap over all types

O(⋆) =

∑

t∈T

∑

i∈(itemst(hyp) ∩ itemst(ref))

counthyp(i , t)

∑

t∈T

∑

i∈(itemst(hyp) ∪ itemst(ref))

max(counthyp(i , t), countref(i , t))

T : set of all LE types associated to the given LE class
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Overlap among Linguistic Elements

The overlap measures can be instantiated at all levels of
linguistic information to provide concrete similarity measures

Lexical overlap over word forms Ol

Average lexical overlap among semantic roles: SR-Or − (∗)
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Example: Lexical Overlaping

hyp on tuesday several missiles and mortar shells fell in southern
israel , but there were no casualties .

ref several qassam rockets and mortar shells fell today , tuesday ,
in southern israel without causing any casualties .

hyp ∩ ref = { ‘tuesday’, ‘several’, ‘and’, ‘mortar’, ‘shells’, ‘fell’, ‘in’, ‘southern’,
‘israel’, ‘,’, ‘casualties’, ‘.’ }

hyp ∪ ref = { ‘on’, ‘tuesday’, ‘several’, ‘missiles’, ‘and’, ‘mortar’, ‘shells’, ‘fell’,
‘in’, ‘southern’, ‘israel’, ‘,’, ‘but’, ‘there’, ‘were’, ‘no’, ‘casualties’,
‘.’, ‘qassam’, ‘rockets’, ‘today’, ‘,’, ‘without’, ‘causing’, ‘any’ }

Ol = |hyp∩ref |
|hyp∪ref |

= 12
25

P = |hyp∩ref |
|hyp|

= 12
18

R = |hyp∩ref |
|ref |

= 12
19
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Example: Average lexical overlaping among semantic roles

hypA1 = { ‘several’, ‘missiles’, ‘and’, ‘mortar’, ‘shells’ }
refA1 = { ‘several’, ‘qassam’, ‘rockets, ‘and’, ‘mortar’, ‘shells’, ‘any’, ‘casualties’ }

hypA0 = ∅
refA0 = { ‘several’, ‘qassam’, ‘rockets, ‘and’, ‘mortar’, ‘shells’ }
hypTMP = { ‘on’, ‘tuesday’ }
refTMP = { ‘today’ }
hypLOC = { ‘in’, ‘southern’, ‘israel’ }
refLOC = { ‘in’, ‘southern’, ‘israel’ }
hypADV = ∅
refADV = { ‘without’, ‘causing’, ‘any’, ‘casualties’ }

SR-Or(A1) = 4
9

SR-Or(TMP) = 0
3

SR-Or(ADV) = 0
4

SR-Or(A0) = 0
6

SR-Or(LOC) = 3
3

SR-Or(⋆) = 4+0+0+3+0
9+6+3+3+4

= 7
25

= 0.28
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Overlap/Matching among Linguistic Elements

Matching is a similar but more strict measure

→ All items inside an element are considered the same unit
→ Computes the proportion of fully translated LEs, according to

their types

Overlap and Matching have been instantiated over different
linguistic level elements (for Englsih)

→ Words, lemmas, POS
→ Shallow, dependency and constituency parsing
→ Named entities and semantic roles
→ Discourse representation (logical forms)

Freely available software: IQMT framework
http://www.lsi.upc.es/∼nlp/IQMT/
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Evaluating Heterogeneous Features

NIST 2005 Arabic-to-English Exercise

Level Metric ρall ρSMT

Lexical BLEU 0.06 0.83
METEOR 0.05 0.90

Parts-of-speech 0.42 0.89
Syntactic Dependencies (HWC) 0.88 0.86

Constituents (STM) 0.74 0.95

Semantic Roles 0.72 0.96
Semantic Discourse Repr. 0.92 0.92

Discourse Repr. (PoS) 0.97 0.90
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Overlap vs. F1

NIST 2005 Arabic-to-English Exercise

SMT
Measure Spearman ρ Pearson r Pearson r

Ol 0.3561 0.0464 0.8460
SR-Or (⋆) 0.7901 0.6719 0.9087

Overlap SR-Mr(⋆) 0.8242 0.7887 0.8966
DR-Or (⋆) 0.7901 0.6243 0.9336
DR-Orp(⋆) 1.0000 0.8932 0.9718

Ol 0.3561 0.0283 0.8386
SR-Or (⋆) 0.7901 0.6675 0.9057

F1 SR-Mr(⋆) 0.7022 0.7658 0.8812
DR-Or (⋆) 0.7022 0.5700 0.9082
DR-Orp(⋆) 1.0000 0.9092 0.9751



Combination of Measures 86

Talk Overview

1 Automatic MT Evaluation

2 The Limits of Lexical Similarity Measures

3 Heterogeneous Evaluation Methods

4 Combination of Measures

5 Conclusions



Combination of Measures 87

Towards Heterogeneous Automatic MT Evaluation



Combination of Measures 88

Towards Heterogeneous Automatic MT Evaluation



Combination of Measures 89

Recent Works on Metric Combination

Different metrics capture different aspects of similarity
Suitable for combination

Corston-Oliver et al. [COGB01]

Kulesza and Shieber [KS04]

Gamon et al. [GAS05]

Akiba et al. [AIS01]

Quirk [Qui04]

Liu and Gildea [LG07]

Albrecht and Hwa [AH07]

Paul et al. [PFS07]

Ye et al. [YZL07]

Giménez and Màrquez [GM08]



Combination of Measures 90

Recent Works on Metric Combination

Different metrics capture different aspects of similarity
Suitable for combination

Corston-Oliver et al. [COGB01]

Kulesza and Shieber [KS04]

Gamon et al. [GAS05]

Akiba et al. [AIS01]

Quirk [Qui04]

Liu and Gildea [LG07]

Albrecht and Hwa [AH07]

Paul et al. [PFS07]

Ye et al. [YZL07]
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The Most Simple Approach: ULC

Uniformly averaged linear combination of measures (ULC):

ULCM(hyp, ref ) =
1

|M|

∑

m∈M

m(hyp, ref )

Simple hill climbing approach to find the best subset of
measures M on a development corpus

M = { ‘ROUGEW ’, ‘METEOR’, ‘DP-HWCr ’, ‘DP-Oc(⋆)’,
‘DP-Ol(⋆)’, ‘DP-Or (⋆)’, ‘CP-STM4’, ‘SR-Or (⋆)’, ‘SR-Orv ’,
‘DR-Orp(⋆)’ }
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Evaluation of ULC

WMT 2008 meta-evaluation results (into-English)

Measure ρsys consistencysnt

ULC 0.83 0.56
DP-Or(⋆) 0.83 0.51
DR-Or(⋆) 0.80 0.50
meteorranking 0.78 0.51
SR-Or(⋆) 0.77 0.50
meteorbaseline 0.75 0.51
PoS-bleu 0.75 0.44
PoS-4gram-F 0.74 0.50
bleu 0.52 —
bleustem+wnsyn 0.50 0.51
...
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Evaluation of ULC

WMT 2009 meta-evaluation results (into-English)

Measure ρsys consistencysnt

ULC 0.83 0.54
maxsim 0.80 0.52
rte(absolute) 0.79 0.53
meteor-rank 0.75 0.49
rte(pairwise) 0.75 0.51
terp -0.72 0.50
meteor-0.6 0.72 0.49
meteor-0.7 0.66 0.49
bleu-ter/2 0.58 —
nist 0.56 —
wpF 0.56 0.52
ter -0.54 0.45
...
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Portability Across Domains

NIST 2004/2005 MT Evaluation Campaigns

AE2004 CE2004 AE2005 CE2005

#references 5 5 5 4
#outputsass. 5/5 10/10 6/7 5/10
#sentencesass. 347/1,353 447/1,788 266/1,056 272/1,082
Avg. Adequacy 2.81/5 2.60/5 3.00/5 2.58/5
Avg. Fluency 2.56/5 2.41/5 2.70/5 2.47/5
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Portability Across Domains

Meta-evaluation of ULC across test beds
(Pearson Correlation)

AE04 CE04 AE05 CE05

ULC (AE04) 0.6392 0.6294 0.5327 0.5695

ULC (CE04) 0.6306 0.6333 0.5115 0.5692

ULC (AE05) 0.6175 0.6029 0.5450 0.5706

ULC (CE05) 0.6218 0.6208 0.5270 0.6047

Max Indiv. 0.5877 0.5955 0.4960 0.5348
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Linguistic Measures over Low-quality Translations

IWSLT 2006 MT Evaluation Campaign (Chinese-to-English)

CRR ASRr ASRs

#references 7 7 7
#outputsass. 6/14 6/14 6/13
#sentencesass. 400/500 400/500 400/500
Avg. Adequacy 1.40/5 1.02/5 0.93/5
Avg. Fluency 1.16/5 0.98/5 0.98/5
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Linguistic Measures over Low-quality Translations

IWSLT 2006 MT Evaluation Campaign (Chinese-to-English)

Similarity Measure CRR ASRr ASRs

1-WER 0.4737 0.5029 0.4814
BLEU 0.5401 0.5337 0.5187
NIST 0.5275 0.5348 0.5269

Lexical Ol 0.5679 0.6166 0.5830
GTM2 0.6211 0.6410 0.6117
ROUGEW 0.5815 0.6048 0.5812
METEOR 0.4373 0.4964 0.4798

ULC 0.4956 0.5137 0.5270

ULCopt 0.6406 0.6688 0.6371
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Linguistic Measures at International Campaigns

NIST 2004/2005

→ Arabic-to-English / Chinese-to-English
→ Broadcast news / weblogs / dialogues

WMT 2007-2010

→ Translation between several European languages
→ European Parliament Proceedings / Out-of-domain News

IWSLT 2005-2008

→ Spoken language translation
→ Chinese-to-English
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Linguistic Measures at International Campaigns

NIST 2004/2005

→ Arabic-to-English / Chinese-to-English
→ Broadcast news / weblogs / dialogues

WMT 2007-2010

→ Translation between several European languages
→ European Parliament Proceedings / Out-of-domain News

IWSLT 2005-2008

→ Spoken language translation
→ Chinese-to-English

Controversial results at NIST Metrics MATR08/09 Challenges!
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Ongoing and Future Work

1 Metaevaluation of measures

→ Better understand differences between lexical and higher level
measures

2 Work on the combination of measures

→ Learning combined similarity measures

3 Porting measures to languages other than English

→ Need of linguistic analyzers

4 Use measures for semi–automatic error analysis

→ (Web) Graphical interface
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Summary and Recommendations

1 Empirical MT is a very active research field

2 Evaluation methods play a crucial role

3 Measuring overall translation quality is hard

→ Quality aspects are heterogeneous and diverse

4 What can we do?

→ Advance towards heterogeneous evaluation methods

→ Metricwise system development

Always meta-evaluate
(make sure your metric fits your purpose)

→ Resort to manual evaluation

Always conduct manual evaluations
(contrast your automatic evaluations)
Always do error analysis (semi-automatic)
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