Probabilistic Robust Parsing with Parallel Multiple
Context-Free Grammars

ABSTRACT

We present an algorithm for incremental statistical parsing with Parallel Multiple Context-Free
Grammars (PMCFG). This is an extension of the algorithm in|Angelov| (2009) to which we added
statistical ranking and robustness. The new algorithm preserves the empirically linear complexity
of the parser, and it continues to support erasing and reduplication in the grammar. The extension
is important since it make it possible to use the algorithm for parsing with large and ambiguous
grammars.

KEYWORDS: Parallel Multiple Context-Free Grammars, Statistical Parsing, Robustness.

1 Introduction

There is always an interest for developing efficient algorithms for expressive grammatical formalisms.
The expressivity helps to better formalize a linguistic theory, but, even the most sophisticated theory
at the end needs to backup with some statistical model. The model is used for disambiguation on
one hand, and on the other hand for guiding the parser in the most prominent direction. In this paper
we present an extension of the incremental parsing algorithm for Parallel Multiple Context-Free
Grammars (PMCFG) (Seki et al.| [1991) which was first introduced in|Angelov| (2009) and later
developed in|Angelov| (2011). The algorithm naturally supports erasing and reduplication and thus
it supports the full power of PMCFG which goes beyond a linear context-free rewriting system. We
extend the basic algorithm with a statistical model which lets the parser to explore only parts of the
search space, when only the most probable parse tree is needed. In addition, we make the parser
robust by introducing a new kind of chart items.

Our work is related to|Kato et al.[(2006) and |[Kallmeyer and Maier| (2010), but since we start from
an algorithm for parsing with PMCFG, we are not limited to linear context-free grammars. We do
not even require that the grammar is binarized as they do. Furthermore, our cost estimation works
differently since we use top-down instead of bottom-up algorithm. The estimation is actually much
closer to the estimation for the Viterbi probability as in|Stolcke|(1995), except that we have to take
into account that our grammar is not context-free. The estimation that we use is both admissible
and monotonic (Klein and Manning|, |2003)) which guarantees that we always find the tree whose
probability is the global maximum.

We start with a formal definition of a weighted PMCFG in Section [2| and we continue with a
weighted deduction system in Section[3] In Section[d] we prove that our estimations are admissible
and monotonic. The algorithm requires an estimate for the minimal inside probability for every
category, and we show the computation in Section[5] Finally in Section [} we demonstrate how to
make the algorithm robust in the presence of unknown words and unknown syntactic constructions.

2 PMCFG definition

We use the same definition of PMCFG as is used in|Angelov|(2009) except that we extend it with
probabilities for the productions:

Definition 1 A parallel multiple context-free grammar is an 8-tuple G = (N,T,F, P, S,d,r,a)
where:

e N is afinite set of categories and a positive integer d(A) called dimension is given for each
AeN.

e T'is a finite set of terminal symbols which is disjoint with N.

e F is a finite set of functions where the arity a(f) and the dimensions r(f) and d;(f) (1 <
i < a(f)) are given for every f € F. For every positive integer d, (T*)¢ denote the set of
all d-tuples of strings over T'. Each function f € F' is a total mapping from (T*)dl(f) %
(T*)%2) oo x (T*)) 1o (T*)D), defined as:

f= (@1,0627--~7C¥r(f))
Here «; is a sequence of terminals and (k; 1) pairs, where 1 < k < a(f) is called argument
index and 1 <1 < dy(f) is called constituent index.

e P is a finite set of productions of the form:
A= f[A1, Ag, . Ag(p)

where A € N is called result category, Ay, Az, ..., Aqy) € N are called argument cate-
gories and f € F is the function symbol. For the production to be well formed the conditions
di(f) =d(A4;) (1 <i<a(f))and r(f) = d(A) must hold. The weight of the production is
w > 0.

e S is the start category and d(S) = 1.

We assume that the weights for the productions are logarithmic probabilities, i.e. the weight of the
production A — f[B] is:

w = —log P(A — f[B]| A) (1)
where P(A — f[B] | A) is the probability to choose this production when the result category is
fixed. In general the sum of the probabilities for all productions with the same result category is less
than or equal to one, i.e. for category A:

Z e <1)

A= f[B) eP
We will use the inequality in Section [6]to make the parser robust.

As an illustration for PMCFG parsing, we use a simple grammar (Figure[I)) which can generate
phrases like “both black and white” and “either red or white” but rejects the incorrect combinations
of prepositions both-or and either-and. We avoid these combinations by coupling the right pairs of
words in a single function, i.e. we have the abstract conjunctions both_and and either_or which are
linearized as discontinuous phrases. The phrase insertion itself is done in the definition of ConjA.
It takes the conjunction as its first argument, and it uses (1; 1) and (1;2) to insert the first and the
second constituent of the argument at the right places in the complete phrase.

A parse tree in PMCFG is a tree of function applications. For instance, the phrase “both red and
either black or white” is represented by the tree:

(ConjA both_and red (ConjA either_or black white))

The weight of a tree is the sum of the weights for all functions used in the tree. In this case the
weight for the example is wy + ws + wg + wy + wg + wo + ws. If there are ambiguities in the
sentence, the parser always finds the tree which minimizes the weight.

3 Deduction System

A key feature in Angelov’s algorithm is that the powerful PMCFG formalism is reduced to a simple
context-free grammar which is extended dynamically at parsing time in order to account for non
context-free features in the original grammar. This can be exemplified with the grammar on Figure T}
There are two productions for category Conj, but in the phrase “both black and white”, after
accepting the token both, only the production Conj —> both_and [] can be applied for parsing the
second part of the conjunction. This is achieved by generating a new category Conj, which has just
a single production:

Conj, % both_and|] 3)

A % ConjA[Conj, A, A]
A 2 black|]
A 2 white|]
A 4 red]]
Conj 5 both_and|]

Conj % either_or]]

Conji 1= ({15 1)(2; 1)(1;2)(3; 1))
black := (”black”)
white := (" white”)
red := ("red”)
both_and := ("both”,”and”)
either_or := (”either”,”or”)

Figure 1: Example Grammar

The parsing algorithm is basically an extension of the Earley| (1970) algorithm, except that the parse
items in the chart also keep track of the categories for the arguments. In the particular case, the
corresponding chart item will be updated to point to Conj, instead of Conj. This guarantees that
only and will be accepted as a second constituent after seeing that the first constituent is both.

Now since the set of productions is dynamic, the parser must keep three kinds of items in the chart,
instead of two as in the Earley algorithm:

Productions. The parser maintains a dynamic set with all productions that are derived during the
parsing. The initial state is populated with the productions from the set P in the grammar.

Active Items The active items play the same role as the active items in the Earley algorithm. They
have the form:

[?A 25 FIB);L: o e Bywg; w,)

and represent the fact that a constituent [of a category A has been partially recognized from
position j to k in the sentence. Here A = f [é} is the production and the concatenation o3
is the sequence of terminals and (k;[) pairs which defines the I-th constituent of function f.
The dot e between « and 3 separates the part of the constituent that is already recognized
from the part which is still pending. Finally w; and w, are the inside and outside weights for
the item.

Passive Items The passive items are of the form:
[A; 1 N]

and state that a constituent with index [from category A was recognized from position j to
position £ in the sentence. As a consequence the parser has created a new category /N. The set
of productions derived for N compactly records all possible ways to parse the j — k fragment.

INITIAL PREDICT

S = f[B]
= = S - start category
[0S 2 f[B];1: eths(f,1);w +wg; 0]
PREDICT .
By 2% ¢[C] [;‘A s FIB];1: cve {d;7) B wiswo)
[¥By =% g[C);r : erhs(g, r); wy + waiw; — wp, + W)
SCAN

[?A&f[é];l:aosﬁ;wi;wo]
[?‘*‘1/11) f[é],l tas e i w;; wo)

COMPLETE .
[FA % fIB];1 : ceswi;wo]
N2 f[B] [FA;IN]

COMBINE ' .
[4A = f[Bl;1: a e (d;r) B;wi;w,] [§Ba;7; N

A2 fIB{d:= N};1: o (dr) e fiw; +wy — wp,; w,)

§ = Wk+1

N = (Avl,ja k)v WN = W;

Figure 2: Deduction Rules

The inside w; and the outside w, weights in the active items deserve more attention since this is the
only difference compared to |Angelov| (2009). When the item is complete, it will yield the forest of
all trees that derive the substring covered by the item. For the example when the first constituent
for category Conj from the example in the beginning of the section is completely parsed, the forest
will contain the single production in (3). The inside weight for the active item is the currently best
known estimation for the lowest weight of a tree in the forest. The trees yielded by the item does
not cover the whole sentence however. Instead, they will become part of larger trees that cover the
whole sentence. The outside weight is the estimation for the lowest weight for an extension of a tree
to a full tree. The sum w; + w, estimates the weight of the full tree.

Before turning to the deduction rules we also need a notion for the lowest possible weight for a tree
of a given category. If A € N is a category then w4 will denote the lowest weight that a tree of
category A can have. For convenience, we also use w5 as a notation for the sum), wp, of the

weight of all categories in the vector B. If the category A is defined in the grammar then we assume
that the weight is precomputed (Section[5). When the category is created by the parser then it will
also compute the weight.

The deduction rules are shown on Figure[2] This is a weighted deduction system and it works with
the assumption that the active items are processed in the order of increasing w; + w, weight. In
the actual implementation we put all active items in a priority queue and we always take first the
item with the lowest weight. We never throw away items but the processing of items with very high
weight might be delayed indefinitely or they may never be processed if the best tree is found before
that. Furthermore, we think of the deduction system as a way do derive a set of items, but in our
case we ignore the weights when we consider whether two active items are the same. In this way,
every item is derived only once and the weights for the active items are computed from the weights
of the first antecedents that led to its derivation.

Finally, we use two more notations in the rules: rhs(g,) denotes constituent with index r in function
g; and wy, denotes the k-th token in the sentence.

The first rule on Figure [2]is INITIAL PREDICT and here we predict the initial active items from the
productions for the start category S. Since this is the start category, we set the outside weight to zero.
The inside weight is equal to the sum of the weight w for the production and the lowest possible
weight w 5 for the vector of arguments B. The reason is that despite that we do not know the weight
for the final tree yet, it cannot be lower than w + w 5 since w3 is the lowest possible weight for the
arguments of function f.

The interaction between inside and outside weights is more interesting in the PREDICT rule. Here
we have an item where the dot is before (d;) and from this we must predict one item for each
production By % g[C] of category By. The inside weight for the new item is wy + w for the
same reasons as for the INITIAL PREDICT rule. The outside weight however is not zero because the
new item is predicted from another item. The inside weight for the active item in the antecedents is
now part of the outside weight of the new item. We just have to subtract wg, from w; because the
new item is going to produce a new tree which will replace the d-th argument of f. For this reason
the estimation for the outside weight is w; — wp, + w,, where we also added the outside weight for
the antecedent item.

In the ScaN rule, we just move the dot past a token, if it matches the current token wy1. Both the
inside and the outside weights are passed untouched from the antecedent to the consequent.

In the COMPLETE rule, we have an item where the dot is moved to the end of the constituent. Here
we generate a new category N which is unique for the combination (A, [, j, k), and we derive the
production N = f [é} for it. We set the weight w for IV to be equal to w; and in Section we
will prove that this is indeed the lowest weight for a tree of category V.

In the last rule COMBINE, we combine an active item with a passive item. The outside weight w,
for the new active item remains the same. However, we must update the inside weight since we
have replaced the d-th argument in B with the newly generated category N. The new weight is
w; +wny — wp,, 1.e. we add the weight for the new category and we subtract the weight for the
previous category Bg.

Now for the correctness of the weights we must prove that the estimations are both admissible and
monotonic.

4 Admissibility and Monotonicity

We will first prove that the weights grow monotonically, i.e. if we derive one active item from
another then the sum w; + w, for the new item is always greater or equal to the sum for the previous
item. PREDICT and COMBINE are the only two rules with an active item both in the antecedents and
in the consequents.

Note that in PREDICT we choose one particular production for category B;. We know that the lowest
possible weight of a tree of this category is wp,. If we restrict the set of trees to those that not only
have the same category B, but also use the the same function g on the top level, then the best weight
for such tree will be w1 + w. According to the definition of wp,, it must follow that:

w1 +ws > wi,

From this we can trivially derive that:
(w1 +wg) + (ws —wp, +we) > w; + w,
which is the monotonicity condition for rule PREDICT.

Similarly in rule COMBINE, the condition:
WN = WB,

must hold because the forest of trees for IV is included in the forest for B,;. From this we conclude
the monotonicity condition:

(w; + wy —wp,) + Wo > w; + W,

The last two inequalities are valid only if we can correctly compute w for a dynamically generated
category V. This happens in rule COMPLETE, where we have a complete active item with a correctly
computed inside weight w;. Since we process the active items in the order of increasing w; + w,
weight and since we create N when we find the first complete item for category A, it is guaranteed
that at this point we have an item with minimal w; + w, value. Furthermore, all items with the same
result category A and the same start position j must have the same outside weight. It follows that
when we create N we actually do it from an active item with minimal inside weight w;. This means
that it is safe to assign that wy = w.

It is also easy to see that the estimation is admissible. The only places where we use estimations
for the unseen parts of the sentence is in the rules INITIAL PREDICT and PREDICT where we use the
weights w5 and wz which may include components corresponding to function argument that are
not seen yet. However by definition it is not possible to build a tree with weight lower than the
weight for the category which means that the estimation is always admissible.

5 Initial Estimation

The minimal weight for a dynamically created category is computed by the parser, but we must
initialize the weights for the categories that are defined in the grammar. The easiest way is to just set
all weights to zero and this is safe since the weights for the predefined categories are used only as
estimations for the yet unseen parts of the sentence. Essentially this gives us statistical parser which
performs Dijkstra search in the space of all parse trees. Any other reasonable weight assignment
will give us an A* algorithm.

In general it is possible to devise different heuristics which will give us different improvements in
the parsing complexity. Right now we use a very simple weight assignment which considers only
the already known probabilities for the productions in the grammar. The weight for a category A is
computed as:

wy = min (w+wg)
A= fIBl e P

Here the sum w+w 5 is just the minimal weight for a tree constructed with the production A O f [E]
at the root. By taking the minimum over all productions for A, we get the corresponding weight w 4.
This is a recursive equation since its right-hand side contains the value w 5 which depends on the
weights for the categories in B. 1t might happen that there are mutually dependent categories which
will lead to a recursion in the equation.

The solution is found with iterative assignments until a fixed point is reached. In the beginning we
assign w4 = 0 for all categories. After that we recompute the new weights with the equation above
until we reach a fixed point.

6 Robustness

There is always a tension between using more expressive formalisms that can capture richer linguistic
structures and simpler formalisms which are not that powerful but are generally more robust. In
order to compensate for this tension we built in robustness in our model. The approach is similar to
the introduction of wildcard states as it is described in |Stolcke| (1995)), but we made it a bit more
general by allowing the wildcards to appear in any position and not only on the top of the tree as in
Stolcke. In addition, we had to adapt the technique that was originally for context-free grammar to
the richer PMCFG formalism.

The idea is that we work under the assumption that the grammar is incomplete in general. For
every new sentence we might expect to find syntactic constructions that are not described by the
grammar. The parsing rules on Figure [2, however, expect that at any point there is some production
and a function definition that the parser must follow in order to move forward. We must relax these
restrictions in order to make the parser robust.

The first important question is how we want to represent incomplete trees. In PMCFG the outcome
from the parser is a tree composed by function applications. When we have a sentence that is not in
the scope of the grammar, then we can interpret it as a sentence that is produced by applying some
unknown and undefined function. Our expectation is that this will happen only locally while as
a whole the grammar will have good coverage. This is a well known situation in type theory and
functional programming where it is often necessary to represent partial programs. In such cases the
program is allowed to contain metavariables which serve as placeholders for the parts that are not
completed yet. For instance, if we want to represent the phrase “neigther black nor white” with the
grammar on Figure[T] then we can choose one of the following two representations:

(ConjA ? black white) 4)
or
(7 black white) &)

Here in both cases 7 is the symbol for a metavariable. The only difference is that while the first case
represents the assumption that the pair neither-nor is some kind of conjunction (which is correct in
this case), the second case is more general and just glues together the parts in the sentence that are
known to the grammar. Which of the two representations will be chosen depends on the statistical
model for the grammar.

In Section[2] we said that the sum of the probabilities for all productions of a given category is less
or equal to one. This directly reflects the fact that we consider the grammar incomplete. There is
always some probability that a new unknown production must be used for a given sentence. For
that purpose for every category we introduce the weight u 4 which is the cost of introducing a
metavariable. With the new weight, we can turn the inequality (2)) into strict equality:

(Z V) e =1 (6)

A=>f[B) eP

Now we can extend the deduction rules on Figure 2] with new rules which will predict and manipulate
meta variables. Basically each time when we do prediction for some category, in addition to the
known productions for the category, we must also predict a metavariable since it is always possible
to encounter an unknown construction. The corner case is when u 4 = oo. This means that there is
a zero probability of encountering unknown constructions. We use this as a filter which makes some
categories closed, i.e. only strict matching is allowed, and leaves other categories open-ended.

The metavariables can be applied to any set of arguments and an active item associated with a
metavariable can scan over any token. This guarantees that the parser can skip over any ungrammat-
ical input while still extracting those pieces that are parseable. The down side of this flexibility is
that the meta rules will introduce far too many ambiguities. In order to control the over-generation,
we must introduce few more weights which will guide the parser to select the best possible tree.

The first observation is that we do not want the the syntactic categories to be nested in an arbitrary
way. For example if some phrase is already recognized as a verb, it would be very unusual to predict
that there is a verb phrase nested inside the verb. On the contrary, the opposite is very likely. The
probability for a particular kind of nesting is captured with the matrix of weights c4 g which gives
the cost of nesting B inside A.

Similarly, we use the weight 4 to distinguish between categories that are mostly lexical and
categories that are mostly syntactic. Although the PMCFG formalism does not have built in
distinction between the two kinds of categories, the linguistic tradition is to assign some category
(part of speech tag) to each word in the sentence, and after that to glue those lexical categories
into phrases labelled with syntactic categories. The weight ¢ 4 tells us how likely it is to assign the
category A to some word. For instance we can assign ¢cosj = 0 (which corresponds to probability
one) and ¢4 > 0 for the example on Figure[I] This will guide the parser to prefer parses for “neither
black nor white” where the unknown words are assigned to the category Conj. In other words it
will prefer the tree (@) instead of tree (3).

The rules for prediction and manipulation of metavariables are given on Figure[3]and are very similar
to the one for normal productions. The main difference is that now we use the pseudo production

A — ?[B] which plays the role of the wildcard state in Stolcke’s algorithm. In addition we use the
weights u 4, ca,p and t 4 for guiding the parser.

The two prediction rules INITIAL META PREDICT and META PREDICT produce an active item with
a metavariable for the start category or for a category from another active item. Note that the
antecedent in the META PREDICT rule is still an active item for a known function and not for a
metavariable. If we did allow metavariables in the antecedent this will let the parser generate trees
where one metavariable is an argument of another. This is unnecessary since such trees can be
flattened without losing useful information. At the same time, the restriction helps by reducing the
search space for the parser. Otherwise, the main difference between the meta rules and the normal
prediction rules is that now the weights ug and u 4 are used as the inside weight for the new items.
This means that in order to guarantee that the new rules are monotonic, for every category A, the
weight u 4 must be bound by the condition u4 > w4. In fact we expect that ug > w4 which
simply states that the coverage of the grammar must be close to complete. If this is not satisfied, it
might happen that the parser will choose to use a metavariable in place where a normal production
can be applied.

The META ScaN rule is the same as the corresponding ScAN rule, except than now we increase
the inside weight with ¢ 4 for each token. In this way the unbound extension of a metavariable is
penalized and in general the parser will prefer shorter spans. Without this penalty, it might happen

INITIAL META PREDICT

S - start categor
[0S — ?[;1: & ug;0] goLy

META PREDICT
(KA 22 FIBLi1: e (dir) Byws; w,)
[iBa = ?[l;7 : & up,;wi — wp, + w,)

META SCAN
[?A — ?[B]; 1 a &5 wi; w,)

— S = Wk
[SH1A = ?2[Blil: a s ejw; + tajwo] "
META COMPLETE

. =

A — 7Bl e wg;w,

[] [] } N = (Aal7]7k)

N 255 6B [PAL N
META COMBINE

—

[jA—=?[Bl;l: aew;w,) [FX;r; N]

[?A — ?[E,N};l sa(d;r) & w; + wNn + ca,x; W)

Figure 3: Meta Rules

that the parser will choose to replace a large complete subtree with a metavariable, when the weight
of the subtree has grown higher than the weight u 4. The weight £ 4 compensates by increasing the
weight for the metavariable as well.

The rules META COMBINE and COMBINE are related in a similar fashion. This time we add another
argument (i.e. a subtree) to a metavariable, but again we penalize the unbound expansion with the
weight ¢4 x.

Note that both in META ScAN and in META COMBINE we add the new elements before instead of
after the dot in the item. In this way it is possible at any time to complete the item with the
META COMPLETE rule.

7 Training

The training is fairly trivial in the absence of metavariables. We need a treebank with PMCFG

trees from which we can estimate the probabilities P(A — f[B] | A) by using simple counting and
smoothing. The weights for the productions are then assigned with Equation (T)).

The training with metavariables is just slightly different. If we have a grammar with partial coverage,
then some of the nodes in the treebank will have to be marked with metavariables. In this case for
each category, we will have both the probability of having a metavariable and also one probability
for each production. The probability for a metavariable is of course the source of the weight u 4.

The weight ¢4 g is computed by counting how often in the treebank a tree of category B appears as
an argument of a function or a metavariable whose result category is A. The negative logarithm of
the probability is the weight c4 B.

Similarly ¢ 4 is computed by counting how often a token is yielded directly from the category A.
Intuitively this gives a low weight for categories like noun and verb and a much higher weight for
the syntactic categories.

8 Evaluation

The parser has been implemented and tested as part of the runtime system for the Grammatical
Framework (GF) programming language (Rantal, 2004). Although the primary application of the
runtime system is currently limited to running GF applications, in principle it is not language
specific, and it can serve as an execution platform for other frameworks where natural language
parsing and generation is needed. The GF system is distributed with a library of large coverage
grammars (Ranta, 2009) for over 20 languages, which are used as a resource for deriving small
domain specific grammars. The first application for our probabilistic PMCFG parser was to apply
these resource grammars directly for parsing. This is an unusual application since the grammars
are highly ambiguous and they lack the domain knowledge that the domain specific grammars can
use for disambiguation. We compensated the lack of explicit knowledge with a statistical model.
Although this is not a new approach in the data-driven language processing, it is a turning point in
the otherwise knowledge driven development in GF.

We used the resource grammar for English in combination with a large lexicon of 40000 lemmas
which is an adaptation to GF of the Oxford Advanced Learner’s Dictionary (Mitton, [1986). In total
the grammar has 44000 productions where we count both the syntactic and the lexical productions.
For training we used the Penn Treebank (Marcus et al.|[1993) which we converted to trees compatible
with the resource grammar. When the grammar does not have a complete coverage for some sentence,
then we inserted some metavariables. The training procedure itself was the same as the one in
Section[7l

We are interested in the evaluation of two main aspects. First of all the output of the parser must be
reasonable, i.e. the statistical model should give higher weights to trees that are closer to the gold
standard. Second the statistical ranking should help in improving the algorithmic complexity by
guiding the parser in the most prominent search direction.

The evaluation of the parsing precision shows results similar to earlier studies on probabilistic
context-free grammars. In general the parser makes good predictions for the part of speech tagsﬂ
and for the local dependencies between the words. The main source of errors are sentences with
an ambiguity in a propositional phrase attachment. This suggests that further research should be
invested into incorporating lexicalized statistical models (Collins} 2003) in PMCFG. Another source
of errors is when the sentence is not fully parseable with the grammar. In this case the parser can use
the meta rules from Section [6]but the tree with the best score is not always the right one. The reason
is that the parser tends to use existing grammar productions as much as possible which can result in
a combination of a metavariable and some low probability productions. Although the probability for
the productions is low, the overall probability of the tree happens to be higher than the probability
of using only a metavariable. This choice makes sense in some cases but is completely wrong in
other cases. Again, it will help if the parser can use a statistical model conditionalized on the lexical
heads.

The parsing complexity was our main concern since parsing with the resource grammars is quite
expensive. Samples from the evaluation are shown on Figures[dand[5} The dots on Figure @ show
the relation between the sentence length and the parsing time in seconds. Each dot is a single sample
from the test corpus. It can be seen that the relation is close to linear although there might be some
small factors of higher order. Still the time for longer sentences (> 20 tokens) is quite high. In
Figure [5] the parsing time is averaged over different sentences of the same length. This time we

'We do not pre-process the sentence with a part of speech tagger and the tags are computed in the parser.

Seconds

Seconds

-; ': :-. "
*ge L%y =
| .I't'.'; -
. '] - [] .
_;,.llllll"'i
10 20 30
Tokens

Figure 4: Parsing Time in Seconds per Token

40

10 20 30

Tokens

Figure 5: Average Parsing Time in Seconds per Token

40

M non-robust
B top-robust
1 robust

showed three different curves. The lowest one (non—-robust) shows the complexity when only
the normal parsing rules are used, and the robustness is switched off. Slightly above it is the curve
with partial robustness where metavariables are allowed only on the top-level (top—-robust). This
is essentially the same kind of robustness that|Stolcke|(1995)) used, and it corresponds to parsing
only chunks in the sentence. Far above these two curves is the curve where full robustness is allowed
(robust). The difference is quite significant and in fact we had to remove some sentences during
the evaluation of the full robustness since we did not have enough memory. Fortunately there is an
easy explanation. The constant factor is a function of the size of the grammar and the introduction
of robustness is essentially equivalent to extending the grammar. The META ROBUST rule can predict
any category from any other category, and the only factor which reduces the number of combinations
is the associated weight for the item. Combinations with high weight can be delayed indefinitely
or never explored if a complete tree with lower weight is found. Fortunately it must be possible
to eliminate most of this combinations, if we had bottom up filtering in the prediction. Currently
neither the PREDICT nor the META PREDICT rule takes into account the value of the current tokenP)
The filtering will benefit the normal prediction too, but it will be even more important for the meta
prediction.

Although the time for parsing long sentences might sound pessimistic, it is actually a major
advancement compared with the non-statistical version of the parser in/Angelov|(2009). Previously
the algorithm was used only with small application grammars with mostly unambiguous lexicons.
In this scenario it performed quite well, but now we are faced with another level of complexity. We
found that the new statistical parser can find the best tree by processing only about 10% of the items
that will have to be processed if the non-statistical parser was used.

9 Conclusion

The presented algorithm is an important generalization of the classical algorithms of [Earley|(1970)
and |Stolcke| (1995) for parsing with probabilistic context-free grammars to the more general
formalism of parallel multiple context-free grammars. The algorithm was implemented and evaluated
as part of the runtime for the Grammatical Framework (Rantal 2004), but the essence of the work is
theoretical and it could be reused in other platforms based on related context-sensitive formalisms.
The main future directions that we identified are an extension to the algorithm which will let us to
use lexicalized statistical models (Collins, 2003}, and an implementation for bottom up filtering
with PMCFG. Furthermore, it would be interesting to develop better heuristics for A* search.

2 Actually we use very simple bottom up filtering for the prediction with pre-terminal categories but this does not help
with the phrase level categories.

References

Angelov, K. (2009). Incremental parsing with parallel multiple context-free grammars. In European
Chapter of the Association for Computational Linguistics.

Angelov, K. (2011). The Mechanics of the Grammatical Framework. PhD thesis, Chalmers
University of Technology.

Collins, M. (2003). Head-driven statistical models for natural language parsing. Comput. Linguist.,
29(4):589-637.

Earley, J. (1970). An efficient context-free parsing algorithm. Commun. ACM, 13(2):94-102.

Kallmeyer, L. and Maier, W. (2010). Data-driven parsing with probabilistic linear context-free
rewriting systems. In Proceedings of the 23rd International Conference on Computational Lin-
guistics, COLING 10, pages 537-545, Stroudsburg, PA, USA. Association for Computational
Linguistics.

Kato, Y., Seki, H., and Kasami, T. (2006). Stochastic multiple context-free grammar for RNA
pseudoknot modeling. In Proceedings of the Eighth International Workshop on Tree Adjoining
Grammar and Related Formalisms, TAGRF 06, pages 57-64, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Klein, D. and Manning, C. D. (2003). A* parsing: fast exact Viterbi parse selection. In Proceedings
of the 2003 Conference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology - Volume 1, NAACL ’03, pages 4047, Stroudsburg,
PA, USA. Association for Computational Linguistics.

Marcus, M. P., Marcinkiewicz, M. A., and Santorini, B. (1993). Building a large annotated corpus
of English: the Penn Treebank. Computational Linguistics, 19:313-330.

Mitton, R. (1986). A partial dictionary of English in computer-usable form. Literary & Linguistic
Computing, 1(4):214-215.

Ranta, A. (2004). Grammatical Framework: A Type-Theoretical Grammar Formalism. Journal of
Functional Programming, 14(2):145-1809.

Ranta, A. (2009). The GF resource grammar library. Linguistic Issues in Language Technology.

Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991). On multiple context-free grammars.
Theoretical Computer Science, 88(2):191-229.

Stolcke, A. (1995). An efficient probabilistic context-free parsing algorithm that computes prefix
probabilities. Computational Linguistics, 21(2):165-201.

	Introduction
	PMCFG definition
	Deduction System
	Admissibility and Monotonicity
	Initial Estimation
	Robustness
	Training
	Evaluation
	Conclusion

