
Attempto Controlled English
and

Its Tools

Norbert E. Fuchs

Department of Informatics & Institute of Computational Linguistics
University of Zurich

fuchs@ifi.uzh.ch
http://attempto.ifi.uzh.ch

 MOLTO Extended Kick-Off Meeting
Gothenburg, 12-13 January 2012

Overview

• Attempto Controlled English (ACE)
• ACE Tools
• Some Applications of ACE
• Related Work
• Some Links

Attempto Controlled English (ACE)
• ACE is a controlled natural language

• precisely defined subset of full English
• unambiguously translatable into logic languages

• ACE is human and machine understandable
• ACE seems completely natural, but is a formal language
• ACE is a logic language with an English syntax

• ACE combines natural language with formal methods
• provably easier to learn and to use than visibly formal languages
• automated reasoning with ACE via existing tools

The Language ACE
• vocabulary

• predefined function words (articles, conjunctions, …)
• predefined phrases (there is a …, it is false that …)
• user-defined content-words (nouns, verbs, adjectives, adverbs)
• basic lexicon (100'000 words), optionally user-defined lexicons
• unknown words: guessing, prefixing with word class

• construction rules
• define admissible sentence structures
• avoid many ambiguous or imprecise constructions

• interpretation rules
• control logical analysis of admissible sentences
• deterministically resolve remaining ambiguities

Example Construction Rules
• proper names
• common nouns

• countable singular
a customer, the customer, every customer, ...

• countable collective plural
2 customers, some customers, ...

• countable distributive plural
each of two customers, ...

• mass
some water, no water, all water

• modifications: adjectives, genitives, relative phrases, variables

.

Example Construction Rules
• verbs

• intransitive, transitive, ditransitive, copula (to be)
• third person singular & plural !
• indicative, simple present, active and passive
• modality (can, must, should, may)
• sentence subordination (believe that ..., wants to ...)
• logical negation & negation as failure

• modifications: adverbs, prepositional phrases

.

John promises Mary to run. = John promises Mary that he runs.

John forces Mary to run. = John forces Mary that she runs.

Example Construction Rules
• simple declarative sentences

A customer waits.
A customer carefully inserts a valid card into a slot.
There is a valid card.

• composite sentences are built with predefined constructors
If a customer inserts a card that is valid then the automatic-teller
accepts the card and displays a message.

• interrogative sentences
Does a customer wait?
Who inserts what?

Note: Colouring and – on later slides – {bracketing} are not part of ACE.

Example Interpretation Rules
• prepositional phrases modify the verb not the noun phrase

A customer {enters a card with a code}.

• relative clauses modify the immediately preceding noun phrase
A customer enters {a card that has a code}.

• surface position of a quantifier determines its relative scope
{A customer enters {every card}}. ! ! ∃∀

{Every customer enters {a card}}.! ! ∀∃

• anaphora: most recent, most specific, accessible noun phrase
John has a customer. John inserts his card and types a code X. Bill
sees X. He inserts his own card and types the code.

ACE Tools
• Attempto Parsing Engine (APE)

• ACE Editor

• AceWiki

• ACE Reasoner (RACE)

• ACE View Protégé Plug-in

• AceRules

• all ACE tools are fully documented and have web-interfaces

• most ACE tools are freely available

Attempto Parsing Engine (APE)
• APE

• checks the syntax of ACE texts
• implements construction and interpretation rules
• Definite Clause Grammar enhanced with feature structures
• accessible via web-service & web-interface

• for syntactically correct texts optionally outputs the analysis of
the text
• tokens & syntax tree
• logical form (DRS and other logical languages)
• paraphrase in ACE (generated from DRS)

• for erroneous texts
• detects syntax errors and unknown words
• generates error and warning messages indicating the location and

the possible causes of the errors, and suggesting remedies

ACE paraphrase: Core ACE, NP ACE

Every company that buys at least 2 standard machines gets a discount.

[]
 [A, B, C]
 object(A, company, countable, na, eq, 1)-1/2
 object(B, machine, countable, na, geq, 2)-1/9
 property(B, standard, pos)-1/8
 predicate(C, buy, A, B)-1/4
 =>
 [D, E]
 object(D, discount, countable, na, eq, 1)-1/12
 predicate(E, get, A, D)-1/10

Pretty Printed Example DRS

Solving the Writability Problem
• APE requires users to learn and to recall the ACE construction

and interpretation rules
• ACE Editor is a predictive editor that helps users to construct

syntactically and lexically correct ACE texts by just clicking on
words and word classes

• ACE Editor is also used in AceWiki

ACE Editor
• solving the writability problem

• ACE Editor is a predictive editor that helps users to construct
correct ACE texts by just clicking on words and word classes

• learning and recalling ACE construction rules is not necessary
• ACE Editor also suggests anaphoric references
• alternatively users can freely input ACE texts
• prediction is controlled by a separate ACE grammar (CODECO)
• ACE Editor submits completed text to APE for parsing

• getting the intended interpretation
• ACE Editor relies also on APE's feedback, but additionally …
• … provides colour-coded syntax boxes reflecting the interpretation

rules

AceWiki
• shortcomings of many existing semantic wikis

• hard to understand for people who are not familiar with formal
languages

• relatively inexpressive (mostly subject-predicate-object structures)

• AceWiki offers an alternative
• uses ACE to express wiki articles
• articles are formal but still readable by people
• ACE covers a large part of FOL and is highly expressive
• collaborative ontology management in ACE

• Kaarel's talk tomorrow will present the latest developments of
AceWiki

AceWiki Reasoning
• AceWiki currently uses the OWL reasoner FaCT++

• AceWiki marks sentences that make a text inconsistent
• ACE sentences that cannot be translated to OWL do not take

part in reasoning
• AceWiki can answer questions
• AceWiki can infer class membership and hierarchies

Attempto Reasoner (RACE)
• RACE performs first-order deductions on ACE texts
• basic proof procedure: if an ACE text (= set of sentences) is

inconsistent then RACE identifies all minimal inconsistent subsets
• variants of the basic proof procedure allow RACE to

• prove that one ACE text (axioms) entails another ACE text
(theorems)

• answer ACE queries on the basis of an ACE text
• RACE provides a proof justification in ACE and full English
• RACE finds all proofs
• RACE uses domain-independent auxiliary axioms to reason about

plurals, natural numbers, equality etc.

Why? Why Not?
• Why?

• for a succeeding proof RACE answers the question "why?" by listing
the axioms needed for the proof

• Why Not?
• for a failing proof RACE answers the question "why not?" by listing

those parts of the theorem or query that could not be proved

ACE View
• idea: use ACE as an alternative syntax for OWL and related

languages

• ACE View
• ontology and rule editor
• uses ACE for the user interface
• creates, views and edits OWL 2 ontologies and SWRL

rulesets
• implemented as plug-in for the Protégé ontology editor

ACE View
• ontology and rule editing using ACE
• input can be actually full English, but only OWL/SWRL-compatible

sentences participate in reasoning
• "semantic feedback" in ACE

• entailments
• entailment explanation
• query-answering

• implementation
• integrates translators ACE→OWL/SWRL and OWL→ACE
• implemented as a plug-in for Protégé 4 …
• … which makes it easy to switch between the "ACE View" and the

traditional "Protégé view"

ACE View: Various Views

AceRules
• domain specialists that are supposed to create and/or validate

rules are often not familiar with formal languages

• verbalisation of the rules in natural language becomes
necessary

• translation of rules into NL (and backwards) is complicated and
a potential source of errors

• AceRules offers an alternative
• expresses rules in ACE
• rules expressed in ACE are formal and still readable by humans

AceRules Interpreter
• AceRules uses forward-reasoning

• semantics of rules is exchangeable
• currently supported semantics

• courteous logic programming
• stable models
• stable models with strong negation

Some Applications of ACE
• specifications: automated teller, Kemmerer's library data base,

Schubert's Steamroller, data base integrity constraints, Kowalski's
subway regulations

• natural language interfaces: model generator EP Tableaux (Munich),
FLUX agent control (Dresden), MIT's process query language (Zurich),
signal processing (Weizman)

• medicine: doctorsʼ reports (Uppsala), clinical practice guidelines (Yale)

• rules: AceRules, policy rules (EU REWERSE), grammar rules (Jones)
• translation into and partially from semantic web languages: OWL,

SWRL, RuleML (New Brunswick), R2ML (Cottbus)
• semantic web tools: ACE View plug-in for Protégé, AceWiki
• documentation: annotations of web-pages in controlled natural

language (Macquarie)

Related Work
• web-sites

• http://sites.google.com/site/controllednaturallanguage/
• http://en.wikipedia.org/wiki/Controlled_natural_language

• small selection of other controlled natural languages
• Bernardi, Calvanese, Thorne (Bozen-Bolzano): Lite Natural Language
• Pulman et al. (Oxford): Computer Processable Controlled Language
• Schwitter (Macquarie): Processable English (PENG)
• Sowa (VivoMind): Common Logic Controlled English
• Hart et al. (Ordnance Survey): Rabbit
• Clark et al. (Boeing): Computer-Processable Language (CPL)
• ...

CPL: Parsing is performed using SAPIR, a mature, bottom-up, broad coverage chart parser. Six times as many error rules as parsing rules.

Attempto Website
• dedicated Attempto server
• news feed
• mailing list
• documentation

• publications
• talks, courses, screen-casts
• demos of ACE tools
• download of tools (GNU Lesser General Public Licence), but we

are now moving to GitHub
• workshop CNL 2012

More information at attempto.ifi.uzh.ch/site/cnl2012

Appendix

Extended DRS
• Kamp & Reyle: DRS can be translated into standard FOL

• extended DRS covers all of ACE
– declarative sentence: derived DRS can be translated into FOL
– interrogative sentence: in DRS represented as label &

declarative sentence with query conditions; can be translated
into FOL

– modality (can, must) and sentence subordination: in DRS
represented as label & declarative sentence; can be translated
into FOL using possible-world semantics (Bos)

– modality (should, may) and negation as failure: in DRS
represented as label & declarative sentence; cannot be
translated into FOL

• in the sequel I will focus on the 'FOL subset' of ACE

Properties of DRS Representation
 Only Predefined Relation Symbols

Every company that buys at least 2 standard machines gets a discount.

[]
 [A, B, C]
 object(A, company, countable, na, eq, 1)-1/2
 object(B, machine, countable, na, geq, 2)-1/9
 property(B, standard, pos)-1/8
 predicate(C, buy, A, B)-1/4
 =>
 [D, E]
 object(D, discount, countable, na, eq, 1)-1/12
 predicate(E, get, A, D)-1/10

Properties of DRS Representation
 Predicates as Arguments

Every company that buys at least 2 standard machines gets a discount.

[]
 [A, B, C]
 object(A, company, countable, na, eq, 1)-1/2
 object(B, machine, countable, na, geq, 2)-1/9
 property(B, standard, pos)-1/8
 predicate(C, buy, A, B)-1/4
 =>
 [D, E]
 object(D, discount, countable, na, eq, 1)-1/12
 predicate(E, get, A, D)-1/10

Properties of DRS Representation
 Quantity Information

Every company that buys at least 2 standard machines gets a discount.

[]
 [A, B, C]
 object(A, company, countable, na, eq, 1)-1/2
 object(B, machine, countable, na, geq, 2)-1/9
 property(B, standard, pos)-1/8
 predicate(C, buy, A, B)-1/4
 =>
 [D, E]
 object(D, discount, countable, na, eq, 1)-1/12
 predicate(E, get, A, D)-1/10

Properties of DRS Representation
 Token Indices

Every company that buys at least 2 standard machines gets a discount.

[]
 [A, B, C]
 object(A, company, countable, na, eq, 1)-1/2
 object(B, machine, countable, na, geq, 2)-1/9
 property(B, standard, pos)-1/8
 predicate(C, buy, A, B)-1/4
 =>
 [D, E]
 object(D, discount, countable, na, eq, 1)-1/12
 predicate(E, get, A, D)-1/10

