
WP4. Grammar-Ontology
Interoperability

Milen Chechev

2nd MOLTO Review
Barcelona, 20.03.2012

The goal of WP4

The objectives of WP4 are
• Research and development of two-way grammar-

ontology interoperability bridging the gap
between natural language and formal knowledge;

• Infrastructure for knowledge modeling, semantic
indexing and retrieval;

• Modelling and alignment of structured data
sources;

• Alignment of ontologies with the grammar
derived models.

Current State – WP4

• Already completed

– D4.1. Knowledge Representation Infrastructure

– D4.2. Data Models and Alignment

– D4.3. Grammar-Ontology Interoperability

• KRI prototype – http://molto.ontotext.com

http://molto.ontotext.com/
http://molto.ontotext.com/

D4.1 – Knowledge Representation
Infrastructure

• OWLIM - a semantic repository that stores all structured
data such as ontologies, background knowledge, etc., and
provides SPARQL query mechanism and reasoning;
• RDFDB - an API that provides a remote access to the
stored structured data via JMS;
• PROTON Ontology - a light-weight upper-level ontology,
which defines about 300 classes and 100 properties,
covering most of the upper-level concepts, necessary for
semantic annotation, indexing and retrieval;
• KRI Web UI a UI that accesses OWLIM through the RDFDB
layer. The web UI gives the user the possibility to browse the
ontologies and the database, to execute SPARQL queries,
etc.

D4.2 – Data Models and Alignment

• Linked Open Data
• Reason-able view

– DBpedia - the RDF-ized version of Wikipedia,
describing more than 3.5 million things.

– Geonames - a geographic database that covers 6
million of the most significant geographical features
on Earth.

– PROTON - an upper-level ontology, 542 entity classes
and 183 properties.

– WKB – general information about People, Locations
and Organizations.

– WordNet

D4.3 Grammar-Ontology
Interoperability

Natural
Language

Query

GF

Ontology GF

Natural
Language
Answer

User

Steps(1)

• User write a query at
some of the natural languages that
are supported from the system

• The NL query is processed by GF and
transformed to GF Abstract Representation

Natural
Language

Query

GF

User

Steps(2)

• Map GF abstract representation to the SPARQL
query

• Use the SPARQL query in the semantic
repository and retrieve the results as RDF
tripples GF

Ontology

Steps(3)

• Process the RDF tripple results and transform
them to GF Abstract Representation.

Ontology GF

Steps(4)

• Use GF to process the GF Abstract
Representation and obtain NL results

GF

Natural
Language
Answer

User

Challenges

• How to build the GF grammar that process the
NL queries?

• How to map the GF abstract representation to
SPARQL query?

• How to build from the retrieved triples GF
abstract representation.

• How to build GF grammar for the results?

GF Query grammar

• Steps:

– Select the knowledge domain

– Select the possible queries

– Make GF abstract grammar

– Make GF concrete grammar for each supported
language.

GF – SPARQL

• Semi-automated approach

• Use set of rules that transform the GF abstract
representation to SPARQL query

RDF Triples - GF

• Semi-automated approach

• Use set of rules to build a GF abstract
representation from the RDF tripples

• Use predefined order for the predicates.

GF Answer grammar

• Automatically build from the ontology.

• Manually corrected and refined.

Example:GF Answer grammar
abstract Wkbx = {

flags startcat = Phrase;

cat

 Phrase; Bank; Continent; City; University;

Fun

InfoBank : Bank ->Phrase;

InfoContinent : Continent ->Phrase;

InfoCity : City ->Phrase;

InfoUniversity : University ->Phrase;

Bank_T_147 : Bank;

Bank_T_148 : Bank;

Continent_T_1 : Continent;

Continent_T_2 : Continent;

City_T_1 : City;

University_T_1 : University;

locatedInBankCity : Bank -> City -> Phrase ;

locatedInUniversityCity : University -> City -> Phrase ;

}

Example:GF Answer grammar(2)
concrete WkbEng of Wkb =

open MorphoEng, ResEng, ParadigmsEng, MakeStructuralEng, SyntaxEng in {

lincat Phrase = Cl;

 Bank = NP;

 Continent= NP;

 City= NP;

 University = NP;

lin Bank_T_1 = mkNP(mkN "Bank DSK");

 Bank_T_2 = mkNP(mkN "First International Bank");

 Continent_T_1 = mkNP(mkN "Europe");

 Continent_T_2 = mkNP(mkN "Asia");

 City_T_1 = mkNP(mkN "Sofia");

 University_T_1 = mkNP(mkN "MIT");

InfoBank x = mkCl x (mkN "bank");

InfoCity x = mkCl x (mkN "city");

InfoContinent x = mkCl x (mkN "continent");

InfoUniversity x = mkCl x (mkN "university");

locatedInBankCity x y = mkCl x (mkVP (passiveVP (mkV2 (mkV "locate"))) (mkAdv (mkPrep "in") y));

locatedInUniversityCity x y = mkCl x (mkVP (passiveVP (mkV2 (mkV "locate"))) (mkAdv (mkPrep "in") y));

http://molto.ontotext.com

Prototype(2)

Evaluation

• Tripples to NL

• NL Quality

Thank you for your attention!

Questions

?

