WP5 Statistical and Robust Translation

Cristina España-Bonet
Lluís Màrquez
TALP Research Center

1st MOLTO Project Meeting Varna, September 9th, 2010

WP5

Overview

- 1 General view
- 2 Planning for WP's first year
- 3 Hybrid approaches
- 4 Short term tasks

Goal

Extension of the grammar-based translation methods to widen their coverage and quality in unconstrained text translation.

Goal

Extension of the grammar-based translation methods to widen their coverage and quality in unconstrained text translation.

Especially related to:

WP3 Grammar-based translation method.

WP7 Quasi-unconstrained domain, patents.

WP9 Evaluation.

Participants & PMs & Tasks

SMT technology, hybrid models, corpora processing.

Participants & PMs & Tasks

UPC 32

SMT technology, hybrid models, corpora processing.

UGOT 9

Probabilistic extension of GF, synthetic corpora for SMT.

Participants & PMs & Tasks

UPC 32 SMT technology, hybrid models, corpora processing.

UGOT 9 Probabilistic extension of GF, synthetic corpora for SMT.

? Corpora provider.

Participants & PMs & Tasks

- UPC 32 SMT technology, hybrid models, corpora processing.
- Probabilistic extension of GF, synthetic corpora for SMT.
- ? Corpora provider.
- UHEL 3 Usability and evaluation of the combined system.

Work plan & Participants

1. Probabilistic extension of a GF domain grammar.
 2. Adapt base SMT systems to the Patents domain.
 3. Develop and test hybrid GF-SMT translation methods.

Work plan & Participants

UPC 32

UGOT 9

? 6

UHEL 3

- 1. Probabilistic extension of a GF domain grammar.
- **2.** Adapt base SMT systems to the Patents domain.
- **3.** Develop and test hybrid GF-SMT translation methods.

Work plan & Participants

- UPC 32
- UGOT 9

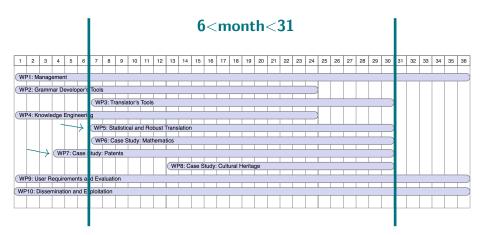
? 6

UHEL 3

- **1.** Probabilistic extension of a GF domain grammar.
- 2. Adapt base SMT systems to the Patents domain.
- **3.** Develop and test hybrid GF-SMT translation methods.

Work plan & Participants

UPC 32	2
--------	---


UGOT 9

?

UHEL 3

- **1.** Probabilistic extension of a GF domain grammar.
- **2.** Adapt base SMT systems to the Patents domain.
- **3.** Develop and test hybrid GF-SMT translation methods.

Timeline

Milestones & Deliverables

Month 18 — Month 24 — Month 30

MS₅

First prototypes of the baseline combination models.

D51

Description of the final collection of corpora.

Milestones & Deliverables

Month 18 — Month 24 — Month 30

MS7

First prototypes of hybrid combination models.

D52

Description and evaluation of the combination prototypes.

Milestones & Deliverables

Month 18 — Month 24 — Month 30

MS8

Translation tool complete.

D53

WP5 final report: statistical and robust MT.

From month 7 to month 18

First proposal

- Compilation and annotation of corpora from the patents domain.
- Training and adaptation of the base SMT systems.
- Statistical extension of the patents GF grammar.
- Evaluation and comparison of GF, SMT and cascade systems (baselines) in real domain data.
- First experiments with the combination approaches.

From month 7 to month 18

First proposal

- Compilation and annotation of corpora from the patents domain.
- Training and adaptation of the base SMT systems.
- Statistical extension of the patents GF grammar.
- Evaluation and comparison of GF, SMT and cascade systems (baselines) in real domain data.
- First experiments with the combination approaches.

Patents data perspectives

A temporal solution

IRF membership has allowed access to CLEF-IP 2010 data:

- Test set containing EPO patents.
- Languages: English, French and German.

Patents data perspectives

A temporal solution

IRF membership has allowed access to CLEF-IP 2010 data:

- Test set containing EPO patents.
- Languages: English, French and German.

Minor drawbacks:

- Too small corpus (to be confirmed).
- Languages: English, **Spanish** and German.

Patents data consequences

In terms of time

WP7 (Case study: Patents) start: Month 4

WP5 (Statistical and Robust translation) start: Month 7

But, first data: Month 8 (at best!)

Patents data consequences

In terms of time

WP7 (Case study: Patents) start: Month 4

WP5 (Statistical and Robust translation) start: Month 7

But, first data: Month 8 (at best!)

4 months minimum delay.

Patents data consequences

In terms of tasks

An obvious delay in corpora compilation and annotation.

Change of approach:

from optimising base systems to dig into the hybrid system.

Patents data consequences

In terms of tasks

An obvious delay in corpora compilation and annotation.

Change of approach:

from optimising base systems to dig into the hybrid system.

/ Mainly, just a change of order in tasks.

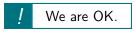
Patents data consequences

In terms of milestones & deliverables

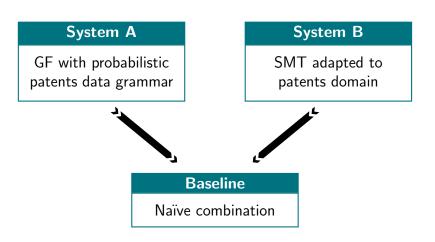
MS5 First prototypes of the baseline combination models.

D51 Description of the final collection of corpora.

Sept. 2011. We can be optimistic if CLEF-IP data is representative and we get the full corpus... before the end of the year?


Patents data consequences

In terms of milestones & deliverables


MS5 First prototypes of the baseline combination models.

D51 Description of the final collection of corpora.

Sept. 2011. We can be optimistic if CLEF-IP data is representative and we get the full corpus... before the end of the year?

Step 1: Base and baseline systems

Step 2: Real hybridisation

1. Hard integration.

Force fixed GF translations within a SMT system.

2. Soft integration led by SMT.

Make available GF translations to a SMT system.

3. Soft integration led by GF.

Complement with SMT options the GF translation structure.

Hard integration

Force fixed GF translations within a SMT system.

- ✓ Straightforward to implement from the SMT pov.
 - Need of GF partial translations.
 - ♦ Waiting for domain adapted base systems.
- X There is no interaction between GF and SMT.

Soft integration led by SMT (I)

Make available GF translations to a SMT system. (I)

Translation Table, core of an SMT system:

```
source language ||| target language ||| probabilities
...
quite a burden ||| un estorbo muy grande ||| 0.25 1.57587e-06 0.25 3.57895e-12 2.718
quite a burden ||| un estorbo muy ||| 0.25 1.57587e-06 0.25 8.38161e-08 2.718
quite a challenge but we ||| todo un reto , pero || 0 || 0.5 6.64558e-05 1 1.46764e-06 2.718
quite a challenge but ||| todo un reto , pero || 0.5 0.00179307 1 9.70607e-05 2.718
quite a challenge ||| todo un reto , ||| 0.5 0.002396 0.5 0.000190619 2.718
quite a challenge ||| todo un reto ||| 0.333333 0.002396 0.5 0.00244338 2.718
quite a considerable delay ||| un retraso muy considerable ||| 0.333333 2.91692e-05 ...
quite a contribution towards ||| una importante contribución en ||| 0.25 9.69758e-07 ...
quite a difference whether ||| muy diferente ||| 0.0344828 8.29695e-09 1 0.0013126 2.718
quite a difference ||| muy diferente ||| 0.0344828 1.38144e-05 1 0.0013126 2.718
```

Soft integration led by SMT (I)

GF scored partial output as **new features** in SMT decoding.

$$\begin{split} \log P(e|f) \sim \lambda_{lm} \log P(e) + \lambda_{g} \log P(f|e) + \lambda_{d} \log P(e|f) \\ + \lambda_{di} \log P_{di}(e,f) + \lambda_{w} \log w(e) + \lambda_{\mathsf{GF}} \log \mathsf{P}_{\mathsf{GF}}(e|f) \end{split}$$

quite a challenge|||todo un reto|||0.333 0.002 0.5 0.002 2.718 $\log P_{\mathrm{GF}}(e|f)$

Soft integration led by SMT (I)

GF scored partial output as **new features** in SMT decoding.

$$\begin{split} \log P(e|f) \sim \lambda_{lm} \log P(e) + \lambda_g \log P(f|e) + \lambda_d \log P(e|f) \\ + \lambda_{di} \log P_{di}(e,f) + \lambda_w \log w(e) + \lambda_{\mathsf{GF}} \log \mathsf{P}_{\mathsf{GF}}(e|f) \end{split}$$

quite a challenge|||todo un reto|||0.333 0.002 0.5 0.002 2.718 $\log P_{\mathrm{GF}}(e|f)$

Requirements:

- GF predictions have to be probabilistic.
- Phrase pairs without prediction must be complemented.

Soft integration led by SMT (II)

Make available GF translations to a SMT system. (II)

GF and SMT translation options drawn from different sources.

Soft integration led by SMT (II)

Make available GF translations to a SMT system. (II)

GF and SMT translation options drawn from different sources.

The intersection is only a subgroup of phrases.

Soft integration led by SMT (II)

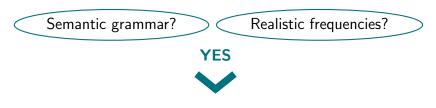
Make available GF translations to a SMT system. (II)

GF and SMT translation options drawn from different sources.

The intersection is only a subgroup of phrases.

Define three translation tables.

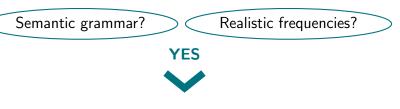
Soft integration led by SMT (II)


GF generated corpus

Semantic grammar?

Realistic frequencies?

Soft integration led by SMT (II)


GF generated corpus

Phrases can be extracted and a translation table construct in a SMT-like way.

Soft integration led by SMT (II)

GF generated corpus

Phrases can be extracted and a translation table construct in a SMT-like way.

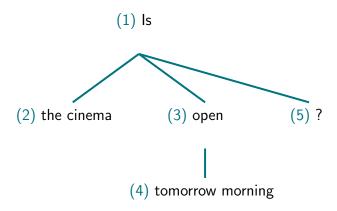
/ Many-to-many alignments should be exploited.

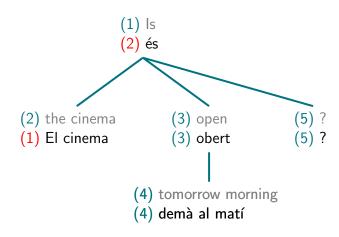
Soft integration led by SMT (II)

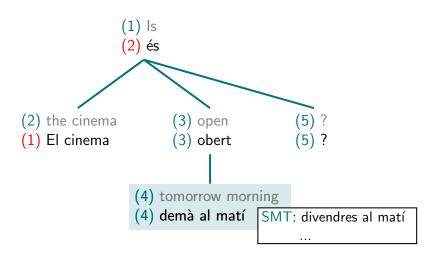
Ongoing experiments

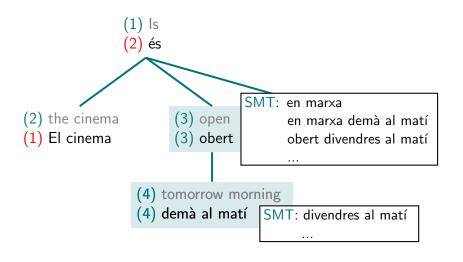
- 5000 sentences from resource grammar with alignments. semantic?
- Many-to-many alignments simulate one-to-many by using multiwords.
- Standard phrase extraction methods can then be used without loosing the power of high quality alignments.
- Probabilities extracted by frequency counts. representative?

Soft integration led by GF


Complement with SMT options the GF translation structure.


Approach being applied for Spanish-to-Basque with an **RBMT system** (Matxin).


UPC+EHU collaboration.


Applicable to MOLTO?

Soft integration led by GF

Comments

- The RB system must parse and translate the input sentence (all!).
- Phrases and segmentation are those given by the RB system.
- Each segment (and up) is sent to a generic SMT to provide more partial translations.
- A second SMT is fed with only the resulting phrases.
- This SMT decoder performs no reordering.

- 1. Construct (toy?) patents corpus. WP7–
 - Definition, alignment and annotation.

- 1. Construct (toy?) patents corpus. WP7–
 - Definition, alignment and annotation.

- 2. Integration of GF translation table (TT).
 - Define domain and sets for the subtask.
 - Meaningful probabilities for GF phrases.
 - Joining 3 TTs: too many parameters? having different scores, is it a fair comparison?

- 3. GF high quality alignments.
 - Domain and sets as in number 2.
 - Study the repercussion in SMT.

- 3. GF high quality alignments.
 - Domain and sets as in number 2.
 - Study the repercussion in SMT.
- 4. Is a Matxin-like hybrid viable with GF?
 - Could GF parse a general sentence? Give partial translations?

- **5.** Probabilistic predictions on GF partial analyses.
 - Rank or weight ambiguous translations.

- **5.** Probabilistic predictions on GF partial analyses.
 - Rank or weight ambiguous translations.
- **6.** GF **grammar** for patents domain.
 - CLEF-IP 2010 data is enough?

Todo's and questions to answer

- 5. Probabilistic predictions on GF partial analyses.
 - Rank or weight ambiguous translations.
- **6.** GF **grammar** for patents domain.
 - CLEF-IP 2010 data is enough?

Joint work with UGOT: Upcoming internal workshop.

WP5 Statistical and Robust Translation

Cristina España-Bonet Lluís Màrquez

1st MOLTO Project Meeting Varna, September 9th, 2010