
OLTOM
Published on Multilingual Online Translation (http://www.molto-project.eu)

D11.2 Multilingual semantic wiki
Contract No.: FP7-ICT-247914
Project full title: MOLTO — Multilingual Online Translation
Deliverable: D11.2 Multilingual semantic wiki
Security (distribution level): Public
Contractual date of delivery: M23
Actual date of delivery: 2013-01-21
Type: Prototype
Status version: v1.0
Author(s): Norbert E. Fuchs, Kaarel Kaljurand, Tobias Kuhn
Task responsible: UZH
Other contributors:

Abstract

This report describes our work to extend the existing semantic wiki engine AceWiki — which is based
on the controlled natural language (CNL) ACE — with multilinguality features. In our approach, the
underlying multilingual CNL grammar is implemented in Grammatical Framework (GF). The grammar
facilitates precise automatic translation between different natural languages defined by the grammar,
making the wiki content multilingual. The underlying grammar itself is integrated into the wiki and can
be collaboratively edited. We discuss the current implementation of the system and its use cases.

http://www.molto-project.eu

Contents
1 Introduction 1

2 Related work 1

3 Background technologies 2
3.1 Attempto Controlled English . 2
3.2 Grammatical Framework . 2
3.3 AceWiki . 3

4 AceWiki-GF 4
4.1 General principles and user interface . 4
4.2 Structure and linking . 4
4.3 Sentence editing . 4
4.4 Lexicon and grammar editing . 5
4.5 Multilinguality . 6

5 Multilingual ACE 6
5.1 Lexicon and grammar editing . 7
5.2 Underlying semantic representation . 7

6 Other use cases 7
6.1 Wikis based on other grammars . 7

6.1.1 Phrasebook . 8
6.1.2 Museum object descriptions . 8

6.2 Language design . 8

7 Implementation 8
7.1 Differences from AceWiki . 8
7.2 GF Webservice and GF-Java . 9
7.3 Grammar integration . 9
7.4 Multilinguality . 10
7.5 Configuration and storage . 10
7.6 Performance evaluation . 11
7.7 Availability . 11

8 Conclusion 11

A Configuration example 12

1 Introduction
A wiki is a user-friendly collaborative environment for building knowledge bases in natural language. The
most well-known example is Wikipedia, an encyclopedia that is being built by ∼100,000 people in hun-
dreds of different languages. Numerous wikis have also been built for smaller domains. Semantic wikis
[BSVW12] combine the main properties of wikis (ease of use, read-write, collaboration, linking) with
knowledge engineering technology (structured content, knowledge models in the form of ontologies, au-
tomatic reasoning). Semantic wiki editors simultaneously work with the natural language content and its
underlying formal semantics representation. The resulting wiki offers more powerful content management
functions, e.g. dynamically created pages based on semantic queries and detection of semantic errors in
the content, but has to somehow meet the challenge of keeping the user interface as simple as expected
from wikis. The existing semantic wiki engines (e.g. Semantic Mediawiki1, Freebase2) support the inclu-
sion of semantics in the form of RDF-like subject-predicate-object triples, e.g. typed wikilinks (predicates)
between two articles (the subject and the object).

Our approach to semantic wikis is based on controlled natural language (CNL). A CNL is a restricted
version of a natural language. CNLs like Attempto Controlled English (ACE) [FKK08] have a precisely
defined syntax, a formal (executable) semantics, and come with end-user documentation describing the syn-
tax, semantics and usage patterns. CNLs and their editing tools support the creation of texts that are natural
yet semantically precise, and can thus function well in human-machine communication. CNL-based wikis
— such as AceWiki [Kuh08], on which our approach is based — can offer greater semantic expressivity
compared to traditional semantic wikis (e.g. OWL instead of RDF), but their user interface does not be-
come much more complex because it remains based on natural language and is therefore inherently easier
to work with.

In this report we describe our work to extend the existing monolingual AceWiki with multilinguality
features. In this approach, the underlying controlled natural language grammar is implemented in Gram-
matical Framework (GF) [Ran11]. The grammar facilitates a precise automatic translation between the
concrete languages defined by the grammar, providing a multilingual interface to the wiki content. As an
additional feature, the underlying multilingual grammar is integrated into the wiki itself and can be collab-
oratively edited. In our main use case, users speaking different languages collaboratively work on the same
formal knowledge base, each in a CNL based on his/her own language. New wiki content is immediately
available in all languages, and therefore all other users can immediately see it (in their language) and can
edit or contribute on top of it. Our work demonstrates the combination of the existing technologies of ACE
and GF, and is implemented by extending the existing ACE-based semantic wiki engine AceWiki with
support to multilinguality and collaborative GF grammar editing. The main goal of this work is to explore
natural language grammar based semantic wikis in the multilingual setting.

This report is structured as follows: in section 2 we review related work; in section 3 we introduce the
core features of the existing tools and technologies employed in the rest of the paper (namely ACE, GF
and AceWiki); in section 4 we discuss the main features of our wiki system; in section 5 we discuss a
multilingual ACE-based wiki; in section 6 we list other potential uses cases; in section 7 we discuss the
current implementation of the wiki engine; in section 8 we summarize our main results and outline future
work.

2 Related work
The main CNL-based wiki that we are aware of is AceWiki, which is also the basis of our work and will be
discussed below. In terms of multilinguality, our wiki system has some similarities with the OWL ontology
editor described in [BSS+09] which allows users to view the ontology in three CNLs, two based on English
and one on Chinese. [GRS12] describes the MoKi semantic wiki engine which offers a “lightly-structured
access mode” for its structured content (OWL). In this mode the content is displayed as an uneditable ACE
text, editing is supported for the simpler isA and partOf statements using templates that combine CNL

1http://semantic-mediawiki.org/
2http://www.freebase.com/

1

http://semantic-mediawiki.org/
http://www.freebase.com/

with HTML-forms, or using a native OWL syntax. As the main difference compared to these systems, our
system uses the CNLs as the only user interface for both editing and viewing.

The research on GF has not yet focused on a wiki-like tool built on top of a GF-implemented grammar
or application. Tool support exists mostly for users constructing single sentences (not texts) and working
alone (not in collaboration). A notable exception is [MMB08], which investigates using GF in a multilin-
gual wiki context, to write restaurant reviews on the abstract language-independent level by constructing
GF abstract trees.

Even though the mainstream wiki engines generally allow for the wiki articles to be written in mul-
tiple languages, these different language versions exist independently of each other and only article-level
granularity is offered by the system for interlinking the multilingual content. Some recent work targets that
problem though, e.g. the EU project CoSyne3 develops a technology for the multilingual content synchro-
nization in wikis by using machine translation.

Some collaborative environments host editable “source code” which automatically generates some part
of the content. Although not CNL-based these systems share with us the idea of an underlying editable
grammar. Adessowiki [LMKR09] is a collaborative environment that carries simultaneously documenta-
tion, programming code and the code execution results (figures, numerical tables). Many of the envisioned
use cases are similar to ours.

3 Background technologies

3.1 Attempto Controlled English
Attempto Controlled English (ACE) [FKK08] is a general purpose language based on first-order logic
with English syntax, i.e. ACE can be viewed as both a natural language understandable to every English
speaker, as well as a formal language with a precisely defined syntax and semantics understandable to
automatic theorem proving software. ACE offers many language constructs, the most important of which
are countable and mass nouns (e.g. ‘man’, ‘water’); proper names (‘John’); generalized quantifiers (‘at least
2’); indefinite pronouns (‘somebody’); intransitive, transitive and ditransitive verbs (‘sleep’, ‘like’, ‘give’);
negation, conjunction and disjunction of noun phrases, verb phrases, relative clauses and sentences; and
anaphoric references to noun phrases through definite noun phrases, pronouns, and variables. Texts built
from these units are deterministically interpreted via Discourse Representation Structures (DRS) [KR93]
which can be further mapped to formats supported by existing automatic reasoners (e.g. OWL, SWRL,
FOL, TPTP). The ACE sentence structures and their unambiguous interpretation is explained in the end-
user documentation of construction and interpretation rules.

The grammar of ACE and its mapping to DRS is fixed and cannot be changed, but users can customize
ACE in their applications by specifying a content word lexicon of nouns, verbs, adjectives, adverbs and
prepositions and their mapping to logical atoms.

While originally designed for software specifications, in the recent years ACE has been developed with
the languages and applications of the Semantic Web in mind. [Kal07] describes ACE fragments suitable
for mapping to and from languages like OWL, SWRL, DL-Query. ACE View [Kal08] and AceWiki are
ACE-based tools for building OWL ontologies.

3.2 Grammatical Framework
Grammatical Framework (GF) [Ran11] is a functional programming language for building multilingual
grammar applications. Every GF program consists of an abstract syntax (a set of functions and their cate-
gories) and a set of one or more concrete syntaxes which describe how the abstract functions and categories
are linearized (turned into surface strings) in each respective concrete language. The resulting grammar de-
scribes a mapping between concrete language strings and their corresponding abstract trees (structures of
function names). This mapping is bidirectional — strings can be parsed to trees, and trees linearized to
strings. As an abstract syntax can have multiple corresponding concrete syntaxes, the respective languages

3http://www.cosyne.eu/

2

http://www.cosyne.eu/

can be automatically translated from one to the other by first parsing a string into a tree and then linearizing
the obtained tree into a new string.

While GF can be used to build parsers and generators for formal languages, it is optimized to handle
natural language features like morphological variation, agreement, and long-distance dependencies. Addi-
tionally, the GF infrastructure provides a resource grammar library (RGL), a reusable grammar library of
the main syntactic structures and morphological paradigms currently covering about 30 natural languages
[Ran09]. As the library is accessible via a language-independent API, building multilingual applications
remains simple even if the programmers lack detailed knowledge of the linguistic aspects of the involved
languages. These features make GF a good framework for the implementation of CNLs, especially in the
multilingual setting [RED12]. The development of GF has focused on parsing tools, grammar editors, and
extending the grammar library to new languages.

3.3 AceWiki
AceWiki4 [Kuh10] is a CNL-based semantic wiki engine. It uses ACE as the user interface language and
OWL as its underlying semantic framework for the integration of its main reasoning tasks, i.e. consistency
checking, classification and query answering.

Because the standard OWL syntaxes are largely impenetrable to a general wiki user, AceWiki offers
an intuitive front-end in the form of a controlled natural language. The wiki articles are edited entirely in
ACE and then automatically mapped to OWL in the background, without the user ever having to rely on
explicit knowledge of OWL. This is an important difference with respect to other semantic wikis where
the user must work in two different languages: the free-form natural language and the semantics modeling
language.

The content of an AceWiki instance is written in a subset of ACE that is formally defined in a grammar
notation called Codeco [Kuh13a]. The grammar targets an OWL-compatible fragment of ACE, i.e. ACE
sentences that are semantically outside of the OWL expressivity cannot be expressed in the wiki. This
guarantees that the complete AceWiki content can be automatically translated to OWL in the background.
Additionally, the grammar is used to drive a look-ahead editor [SLH03] which guides the input of a new
sentence by proposing only syntactically legal continuations of the sentence.

The content is structured into a set of articles, each article containing a sequence of entries. Each entry
is either a declarative sentence, interrogative sentence (question), or an informal comment. The declarative
sentences assert new information into the knowledge base and therefore influence the consistency and
entailments of the knowledge base, the questions provide an access point to the entailed knowledge. The
comments are not restricted by the look-ahead editor nor checked by the semantic reasoner. They are plain
text with possible wikilinks to other articles. Upon every change in the wiki, an OWL reasoner determines
its effect, and possibly flags inconsistencies or updates the dynamically generated parts of the wiki (e.g.
concept hierarchies and answers to questions). The content words (proper names, nouns, transitive verbs,
relational nouns and transitive adjectives) in the wiki sentences map one-to-one (i.e. link) to wiki articles.
Semantically, content words correspond to OWL entities: proper names to OWL individuals, nouns to OWL
classes, and the relational words to OWL properties.

Even though the AceWiki implementation is still in its alpha stage, it can be considered mature for
academic purposes. AceWiki’s code base has been used to implement various tools, such as the ACE
Editor [Kuh13a] and the corpus query interface Coral [KH12].

In previous work, two usability experiments have been performed on AceWiki with altogether 26 par-
ticipants [Kuh09]. The results showed that AceWiki and its editor are easy to learn and use. Another study
confirmed that writing ACE sentences with the editor used in AceWiki is easier and faster than writing
other formal languages [KH12]. It has also been demonstrated that ACE is more effective than the OWL
Manchester Syntax in terms of understandability [Kuh13b].

From the viewpoint of a general CNL-based semantic wiki, the AceWiki user is restricted to using a
single CNL with an unchangeable and unambiguous grammar and a predetermined reasoning mechanism.

4http://attempto.ifi.uzh.ch/acewiki/

3

http://attempto.ifi.uzh.ch/acewiki/

4 AceWiki-GF
Our multilingual GF-implemented semantic wiki has been realized as an extension of AceWiki. We will
refer to this extension here as AceWiki-GF and use “standard AceWiki” or simply “AceWiki” to refer to
the AceWiki implementation before the work on the GF-based extension started.

Extending AceWiki has allowed us to reuse its infrastructure (look-ahead editor component, access
to OWL reasoners and the presentation of reasoning results, document navigation system, etc.). In the
following we only describe the main differences between AceWiki and AceWiki-GF. (See section 3.3 for
the general discussion of the AceWiki engine.) Also, in the following we focus on the unique aspects
that our proposed wiki system must manage, such as multilinguality and formal grammars, and we do
not discuss the standard wiki features that make the collaborative editing possible such as “talk pages”,
community rules, revision history, user identification and access rights, reward system, etc. We consider
such features general enough that they apply without major changes to our wiki system. This section
discusses the main features and general goals of AceWiki-GF, while more details about its implementation
are provided in section 7.

4.1 General principles and user interface
The standard AceWiki principles have been largely preserved in the extension. The wiki still follows the
main principle of CNL-based wikis, i.e. that formal notations are hidden. In this case the user does not
see the GF trees which actually define the content but only interacts with the natural language sentences.
(Experienced users can still look at the GF parser output which provides information on syntax trees,
translation alignment diagrams, etc.) This general principle is challenged somewhat if we allow grammar
editing (or even simply viewing) in the wiki as this typically assumes more technical knowledge. Also, user
understanding of the various forms of ambiguities induced by the underlying grammar can pose a problem
for the end user. We are currently investigating how ambiguity is best presented to users and how we can
help them to resolve it.

The user interface of AceWiki has largely been preserved, the main addition is an option for the user
to set the content language (see the left sidebar of figure 1). Again, the possibility for grammar editing
requires a new kind of user interface.

4.2 Structure and linking
In general, AceWiki-GF follows the AceWiki structure — the wiki is a set of interlinked articles, each
article containing a sequence of sentences. New is the fact that also the grammar definition can be part of
the wiki and can be referenced from the articles using wikilinks.

GF grammars are naturally representable as sets of wiki articles. Each grammar module can be stored
as an article and linked to the articles of the modules that it imports. Furthermore, grammar modules have
internal structure — sets of categories and functions (which reference categories) — which can be linked to
wiki content because the content is represented as a set of trees (i.e. structures of function names). One of
the benefits of having a grammar definition as part of the CNL-based wiki is that it provides an integrated
documentation of the language that the wiki users are required to use.

Note that a grammar can also reference modules which are part of the general RGL and are thus not
editable and also not part of the wiki. These modules can be made accessible via external links, e.g. to the
online RGL browser5.

4.3 Sentence editing
The user interface for adding and modifying wiki entries is the same as in AceWiki, i.e. based on sentences
and supporting the completion of a syntactically correct sentence by displaying a list of syntactically legal
words that can follow the partially completed sentence. The language of the sentence depends on the
chosen wiki language. In case a successful entry is ambiguous (i.e. parsing results in multiple trees) then

5http://www.grammaticalframework.org/lib/doc/browse/

4

http://www.grammaticalframework.org/lib/doc/browse/

Figure 1: Multilingual geography article about Switzerland displayed in German. The user can change the
language of the wiki (both the content and the user interface labels) using the language switching menu
in the left sidebar. Otherwise the user interface is identical to the AceWiki user interface with the familiar
look-ahead editor that helps users to input syntactically controlled sentences.

the ambiguity is preserved. If viewed in another language, multiple different sentences can then occur
as linearizations of the ambiguity. This allows wiki users who work via the other language to resolve
the ambiguity. A monolingual way to deal with ambiguity is to implement for every concrete syntax an
additional “disambiguation syntax” [RED12] that overrides the linearizations of the ambiguous constructs
to have an unambiguous, although possibly a more formal-looking notation. This syntax could be used to
display the entry in the case of ambiguity.

We note that some syntax-aware editors, e.g. the GF Syntax Editor6 or the OWL Simplified English
editor [Pow12] operate more on the abstract tree level and thus avoid the problem of ambiguous entries.
These approaches also simplify smaller edits e.g. replacing a word in the beginning of the sentence. The fact
that they abstract away from linguistic details like case and gender might make them preferable for users
with only basic knowledge of the underlying language. It is therefore worth exploring these approaches as
a complementary way to view and edit CNL statements in AceWiki-GF.

4.4 Lexicon and grammar editing
The standard AceWiki supports a single grammar and allows users to control only the set of (monolingual)
content words. As a multilingual system with multiple editable grammars, AceWiki-GF needs to take a
more general approach.

In AceWiki-GF, the controlled languages of each wiki are governed by a formal grammar. Examples of
grammars are general purpose CNL grammars like ACE (ported to other natural languages) and grammars

6http://cloud.grammaticalframework.org/syntax-editor/editor.html

5

http://cloud.grammaticalframework.org/syntax-editor/editor.html

for specific domains, e.g. grammars for describing museum objects, mathematical expressions, or tourist
phrases.

The wiki integrates the grammar definition allowing users to learn about the languages that it defines
and even change it to extend/modify the languages. In principle, the grammar can be changed in multiple
ways (translating an existing word, adding a new word, changing the phrase structure) each requiring a
different grammar engineering experience from the users.

The AceWiki-GF extension has removed the ACE-specific lexical editor, and replaced it with a GF
source editor. While general and powerful, this approach cannot be used to target all the above mentioned
usage scenarios in a user-friendly way. For the case of a simple lexical editing, the editor user interface
must focus on just the words and their forms (in multiple languages), ideally filling in automatically all the
forms based on a few input forms using the so called smart paradigms [Ran09].

4.5 Multilinguality
In a wiki, language serves different purposes: expressing the wiki content, both user-edited and dynamically
created; localizing the user interface (button labels etc.); etc. The languages fall into two types — natural
(e.g. English) and formal (e.g. first-order logic). While natural language appears in the user interface via
which users edit and view the content, the formal languages are typically used in the background as input
to formal reasoners to reason about the content or automatically generate new content.

The content of AceWiki-GF articles has a language-neutral internal representation and can be presented
in any of the languages that the underlying grammar supports, depending on the user’s preference. In the
case of a concrete wiki instance, a smaller number of languages might be initially preferred and more
languages could be gradually added, providing translations of the wiki content. In addition to the wiki
reader and the wiki editor, there is now a third role for a wiki user, namely the translator. The main task
of the translators is to translate the existing words and to check if the automatically generated sentence
translations are accurate with respect to the domain.

5 Multilingual ACE
In our main use case, a number of people speaking different languages are supposed to build and agree
on a formal knowledge base. They do not share a common language and do not have enough technical
knowledge to directly work with ontology languages such as OWL. For this situation, we want to provide
a tool with which each user can contribute to the knowledge base in a restricted version of his/her own
language, which gets immediately translated into a formal representation as well as a number of other
natural languages at a high quality. In a sense, the different CNLs act as different lenses to see the same
formal content of the knowledge base. This minimizes misunderstandings and feedback loops, as all users
can at all times see the complete knowledge base in their language.

To offer the functionality of the standard AceWiki combined with the multilingual features made pos-
sible by GF, we reimplemented the ACE grammar in GF and ported it via the RGL API to multiple natural
language fragments. (See the ACE-in-GF website7 and the deliverable D11.1 [CFK12] for more details of
this work.) With this grammar, the content of a wiki can be currently made available in 15 languages, which
form a subset of the RGL that has been tested in the context of the multilingual ACE grammar. Most of
these languages provide full coverage of the syntactic structures of ACE, for some languages a few struc-
tures (e.g. verb phrase coordination, some forms of questions) have not been implemented yet. Also, while
the concrete syntax is designed to be unambiguous for ACE, i.e. every supported sentence generates just
a single abstract tree, the grammar in general does not guarantee this property for the other implemented
languages. In some cases it seems to be better to let a user work with an ambiguous representation if it
offers a simpler syntax and if the ambiguity can be always explained (e.g. via the ACE representation) or
removed in the actual usage scenario (e.g. in a collaborative wiki environment).

7http://github.com/Attempto/ACE-in-GF

6

http://github.com/Attempto/ACE-in-GF

5.1 Lexicon and grammar editing
The developed ACE-in-GF grammar comes only with small multilingual test vocabularies. Therefore, users
are expected to build up the wiki vocabulary using the grammar editing feature of the wiki engine and
choosing a subset of the 15 languages which they want to support. An initial setup of the wiki makes the
ACE grammar available as a set of grammar modules falling into the following categories:

• ACE resource grammar (about 30 modules which are typically identical to their English resource
grammar counterparts, sometimes overriding certain structures);

• ACE application grammar which reflects the AceWiki subset of ACE (one module);

• instantiation of this grammar into each supported language with additional modules that describe
language-specific overriding of some of the functions;

• empty content word lexicon module(s) for each language.

In order to add a new word to the wiki a line needs to be added to the lexicon wiki page, i.e. the page
that corresponds to the lexicon module. Although editing the lexicon technically means editing the GF
grammar, the lexicon module of the grammar is conceptually much simpler than the grammar in general
and maps one-to-one to the respective ACE lexicon structure (for English). The structure of lexicons in all
the supported languages is roughly the same even if some languages are morphologically more complex
(e.g. have more case endings). The language-specific lexical structures are hidden from the user behind
language-neutral categories like N and V2 and constructed by functions like mkN and mkV2 which are
capable of guessing the full word paradigm on the basis of only one or two input forms. Thus, support
for multilinguality does not increase the conceptual complexity of the wiki. However, a user who edits the
lexicon must be familiar with the GF RGL Lexical Paradigms API8.

Wiki users experienced in GF are also able to modify the full grammar, although we do not see many
compelling use cases for that as ACE itself is pre-defined and thus changing its grammar should not be
allowed (e.g. it would break the functioning of the mapping to OWL). Its verbalization to other languages,
however, is sometimes a matter of taste, and could be therefore made changeable by the wiki users, e.g.
users can add an alternative formulation of an ACE sentence in some language by using a GF variant. Also,
the possibility to define arbitrary GF operators can make certain lexicon entry tasks more convenient.

5.2 Underlying semantic representation
In order to map the wiki content to first-order logic or OWL, each wiki entry is linearized in ACE and an
external ACE parser (APE) is used to generate the DRS that corresponds to the ACE form. The grammar
currently represents ACE by two concrete languages “Ace” and “Ape”, where the first corresponds to an
ACE sentence assuming a suitable background lexicon, and the second includes the lexicon in the sentence
string and thus explicitly provides all the necessary information to the ACE parser. The wiki user is viewing
and editing only the “Ace”-formatted articles.

6 Other use cases
Our main use case for AceWiki-GF is about general knowledge engineering, as described above. Below,
we present some additional use cases, which we might explore in more depth in the future.

6.1 Wikis based on other grammars
The grammar of AceWiki-GF is exchangeable and allows for GF grammars that have no mapping to a logic
language like OWL. The focus of such a wiki would be on the multilinguality features, and not on formal
reasoning and querying. For instance, such wikis could be used for applications such as a tourist phrase

8http://www.grammaticalframework.org/lib/doc/synopsis.html

7

http://www.grammaticalframework.org/lib/doc/synopsis.html

book, a museum catalog, a technical manual, or a collection of mathematics exercises. To that aim, some
grammars developed in the MOLTO project are described below that could be used within AceWiki-GF,
namely the Phrasebook grammar[RED12] and the museum object descriptions grammar[DRE12].

6.1.1 Phrasebook

To serve as a phrasebook based on the existing Phrasebook grammar, a wiki should ideally have the fol-
lowing features that make it different from an ACE-based wiki:

• by definition a (tourist) phrasebook must contain at least two languages, and most users of the wiki
would like to view the wiki content in at least two languages, possibly presented in parallel;

• the wiki should be structured more like a book, with chapters, sections and a table of contents, and
there is less use for traditional wiki links;

• more sentences are likely to be ambiguous, and the wiki should effectively explain the ambiguities;

• the domain is simpler (i.e. it is not based on any formal logic), and therefore the users are more likely
to want to contribute to the language that underlies the wiki.

6.1.2 Museum object descriptions

A possible wiki for describing museum objects would be highly structured, with many interlinked wiki
pages for paintings, painters, etc. There would be need for a large number of external links, and possibly
embedded multimedia content. This domain is also more formal and would benefit from automatic answer-
ing of user queries like "Which painter lived in Paris?", or "Which Dutch painter painted which French
painter?".

6.2 Language design
Another possible use case for AceWiki-GF is collaborative language design. The wiki users could take e.g.
the ACE grammar as the starting point and customize it for a specific domain, possibly changing some of
its original features and design decisions. Alternatively, they could start by cloning an existing resource
grammar and then port it to a different language.

In this case most of the activity would happen in the grammar pages and the wiki sentences would serve
only as a way to test the currently effective grammar implementation.

7 Implementation
AceWiki is a web-based application implemented in Java and built with the Echo Web Framework9.
AceWiki-GF extends AceWiki by integrating the GF toolset into the wiki engine. Both systems include
the ACE parser APE10 in order to map ACE sentences to the OWL form and provide other ACE-specific
analysis (paraphrasing, syntax trees, etc.).

7.1 Differences from AceWiki
Because AceWiki is a monolingual engine, several modifications needed to be done to accommodate multi-
linguality, i.e. to support the wiki viewing/editing in multiple languages depending on the user’s preference:

• the Codeco grammar/parser for ACE was replaced by the a GF parser using any GF grammar for
parsing, linearization and other operations;

9http://echo.nextapp.com/
10http://github.com/Attempto/APE

8

http://echo.nextapp.com/
http://github.com/Attempto/APE

• the English-specific lexicon editor was replaced by a simple GF source editor which can be used to
edit any GF grammar modules, among them lexicon modules;

• the atomic wiki entry, which for the monolingual AceWiki was an ACE sentence, was changed to
a GF abstract tree set. The new representation is language-neutral and can furthermore represent
ambiguity;

• the notion of wiki article/page was extended to also include arbitrarily named pages (in AceWiki
all pages are named by their corresponding OWL entity) and pages that represent editable grammar
modules.

7.2 GF Webservice and GF-Java
AceWiki-GF communicates with the GF technology via the GF Webservice [BAR09] which provides the
GF parsing and linearization (and the related look-ahead and translation) services for grammars in the PGF
format [ABR10]. The GF Webservice has been recently extended to provide a GF Cloud Service API11

which additionally allows for modifications to the grammar.
GF-Java12 is a small Java library that AceWiki-GF uses to interact with the REST/JSON API of GF

Webservice. The general goal of GF-Java is to

• provide a convenient tool for Java programmers for accessing the GF tools, e.g. by offering enumer-
ated constants, checked exceptions, GF structures (e.g. trees) as Java objects, etc.;

• provide a general API to the GF tools, where the implementation can either be the GF Webservice or
possibly JPGF13 (which currently does not provide grammar editing);

• offer custom extensions to the GF tools, e.g. an iterator over all possible sentence completions with
growing length.

GF-Java conforms to the GF Webservice REST API, i.e. it provides the same access methods and default
parameter values.

7.3 Grammar integration
The wiki makes the grammar available as a set of interlinked grammar modules (e.g. abstract, concrete, re-
source). The users can link to the grammar modules from content articles and navigate the import hierarchy
of the modules.

A simple GF source editor (figure 2) is currently provided for the users to update the grammar. It can be
used to edit any grammar module that is available as part of the wiki. This excludes RGL modules which
are only available as precompiled static modules as part of the GF Webservice. Upon update a grammar
page is saved via the GF Webservice resulting in a compilation of a new underlying PGF file.

The user-friendliness of the current editor can be improved by integrating some of the features (e.g.
syntax highlighting, auto-completion) of existing GF grammar editors (GF online editor for simple multi-
lingual grammars14; the GF Eclipse Plugin15). More importantly, a dedicated front-end should be provided
to the lexicon modules, which benefits from their simpler structure (where each function has a simple cate-
gory and is often linearized using a well-defined RGL operator). Such an editor can offer a more structured
(e.g. tabular) interface and can hide most of the complexities of GF source, see for example the “row” and
“matrix” views of the GF online editor for simple multilingual grammars.

11http://cloud.grammaticalframework.org/gf-cloud-api.html
12https://github.com/Kaljurand/GF-Java
13https://github.com/GrammaticalFramework/JPGF
14http://cloud.grammaticalframework.org/gfse/
15http://www.grammaticalframework.org/eclipse/index.html

9

http://cloud.grammaticalframework.org/gf-cloud-api.html
https://github.com/Kaljurand/GF-Java
https://github.com/GrammaticalFramework/JPGF
http://cloud.grammaticalframework.org/gfse/
http://www.grammaticalframework.org/eclipse/index.html

Figure 2: The lexicon can be edited in bulk using a simple GF source editor. In most cases the user can rely
on GF smart paradigms, i.e. provide just the lemma form of the word for the automatic generation of the
full lexicon entry. The lexicon of each language is in a separate module. The multilingual lexicon entries
are aligned via the abstract functions.

7.4 Multilinguality
The standard AceWiki user interface (labels etc.) is based on English, and since the user is expected to know
English anyway (to be able to effectively work with ACE) the localization of the user interface has not been
a high priority. However, in the multilingual content setting the user interface must also be multilingual.

We have refactored the AceWiki codebase to simplify the localization of the AceWiki user interface.
The language of the user interface is now determined by the user’s locale setting, which in case of AceWiki-
GF is guessed on the basis of the name of the concrete language (e.g. ‘GeographyGer’ is mapped to the
German locale), unless the locale is explicitly specified in the grammar. We note that the GF technology
could also be used to generate multilingual user interface labels as done in [MMB08].

The multilinguality of the content is achieved by keeping the wiki content as GF trees and presenting it
in any of the languages that the grammar supports, depending on the preference of the user.

Currently, the names of the articles and the content of the free-form comments are not multilingual, i.e.
they exist only in the language in which they were written.

7.5 Configuration and storage
The AceWiki-GF configuration file (see an example in appendix A) specifies for each wiki at compile time:

• the URL of the used GF webservice;

• the location of the PGF-formatted grammar, as a directory and filename in the webservice directory;

• the start category of the grammar (optional);

• the default concrete language;

• whether registration and login is required to view and/or edit the wiki;

• the local directory for the wiki data.

10

In addition to the configuration, the wiki is defined by a set of data files (which holds the tree structures
of the wiki sentences and the GF source of the grammar modules) and the external GF webservice. The
RGL modules are also part of the webservice, i.e. they are currently not stored as part of the wiki data files.

Every existing PGF grammar can be used as the basis of a wiki, assuming that it is (can be) made
available via the GF Webservice. In order to edit the grammar in the wiki, its source code must be available.
We have provided a set of Python scripts16 that automate the setting up of a wiki based on an existing
grammar.

7.6 Performance evaluation
We looked at the various performance properties of AceWiki-GF resulting from the introduction of GF
tools, specifically tools that are accessible over HTTP and possibly running on a remote server. In our pre-
liminary tests a demo wiki was running on the Attempto project server http://attempto.ifi.uzh.
ch and using a GF webservice running on the GF server http://cloud.grammaticalframework.
org/. The wiki was used by a single user.

The parsing (and look-ahead) performance is comparable to the standard AceWiki, although using the
external GF webservice adds some delay. In case of the standard AceWiki the token predictor is imple-
mented in Java and built into the wiki engine. In case of AceWiki-GF, every look-ahead (pressing of the
tab-key in the look-ahead editor user interface) triggers a query to the GF server. We have tested the look-
ahead feature with grammars that have a large number of terminals that can occur in the same syntactic
position (e.g. approx. 5000 place names in an address grammar17) and found the performance satisfactory.

Multilingual viewing of a sentence or a set of sentences involves the linearization of their trees. Com-
pared to parsing, linearization is a much faster operation in GF. Translating a complete article into another
language (which happens only the first time an article is opened by any user, as at this point the lineariza-
tions are cached) is reasonably fast assuming a medium sized article. Similarly, translating a sentence into
all the languages of the wiki is a fast operation.

Grammar editing (such as introducing a new word) triggers the recompilation of the grammar by the
GF server. Recompilation of the grammar is currently relatively slow, the runtime depending on the amount
of included languages and the complexity of their (resource) grammars. Any change to the grammar can
invalidate some or all of the wiki content. Currently an automatic refresh is not triggered in the wiki because
naively re-linearizing every tree would involve a serious performance penalty. Ideally the GF server should
respond to every grammar update with a list of affected functions, categories and languages, so that only
the affected parts of the wiki could be refreshed.

7.7 Availability
The current implementation of AceWiki-GF is publicly available on GitHub18 and can be used via some
demo wikis19. The demo wikis are based on a wide variety of GF grammars, including the grammars
available via the existing GF demos (such as Minibar20) and an editable version of the multilingual ACE
grammar.

8 Conclusion
The main contribution of this work is a system that combines two existing technologies: GF and AceWiki.
With the help of GF, an existing monolingual semantic wiki (i.e. AceWiki) has been extended by multilin-
guality features. This means that writing an article in one language makes it immediately available in all
other languages, with precise translations offered by GF.

16https://github.com/Kaljurand/GF-Utils
17http://kaljurand.github.com/Grammars/
18http://github.com/AceWiki/AceWiki
19http://attempto.ifi.uzh.ch/acewiki-gf/
20http://cloud.grammaticalframework.org/minibar/minibar.html

11

http://attempto.ifi.uzh.ch
http://attempto.ifi.uzh.ch
http://cloud.grammaticalframework.org/
http://cloud.grammaticalframework.org/
https://github.com/Kaljurand/GF-Utils
http://kaljurand.github.com/Grammars/
http://github.com/AceWiki/AceWiki
http://attempto.ifi.uzh.ch/acewiki-gf/
http://cloud.grammaticalframework.org/minibar/minibar.html

So far, our approach has not led to any major problems, and the resulting implementation is stable
enough to serve as a prototype and as a basis for evaluation. We believe that the resulting user interface is
intuitive and useful, and we will test these assumptions in user experiments within the next months.

The main focus of our future work is providing a user-friendly lexical editor as a user interface compo-
nent of the wiki.

A Configuration example
Example of a web.xml configuration of a MOLTO Phrasebook wiki instance. The configuration specifies a
start category for the wiki sentences, the URL of the GF webservice (in this case the public GF webservice
http://cloud.grammaticalframework.org is used), and the default concrete language, among
some technical details.

<servlet>
<servlet-name>/grammars/Phrasebook.pgf</servlet-name>
<servlet-class>ch.uzh.ifi.attempto.acewiki.BackendServlet</servlet-class>
<load-on-startup>1</load-on-startup>
<init-param>

<param-name>engine_class</param-name>
<param-value>ch.uzh.ifi.attempto.acewiki.gfservice.GFEngine</param-value>

</init-param>
<init-param>

<param-name>pgf_name</param-name>
<param-value>/grammars/Phrasebook.pgf</param-value>

</init-param>
<init-param>

<param-name>start_cat</param-name>
<param-value>Question</param-value>

</init-param>
<init-param>

<param-name>service_uri</param-name>
<param-value>http://cloud.grammaticalframework.org:80</param-value>

</init-param>
<init-param>

<param-name>ontology</param-name>
<param-value>grammars__Phrasebook</param-value>

</init-param>
</servlet>
<servlet-mapping>

<servlet-name>/grammars/Phrasebook.pgf</servlet-name>
<url-pattern>/grammars/Phrasebook.pgf</url-pattern>

</servlet-mapping>

<servlet>
<servlet-name>/grammars/Phrasebook.pgf/Phrasebook</servlet-name>
<servlet-class>ch.uzh.ifi.attempto.acewiki.AceWikiServlet</servlet-class>
<init-param>

<param-name>backend</param-name>
<param-value>/grammars/Phrasebook.pgf</param-value>

</init-param>
<init-param>

<param-name>language</param-name>
<param-value>PhrasebookEng</param-value>

</init-param>
<init-param>

<param-name>title</param-name>
<param-value>Phrasebook questions</param-value>

</init-param>
</servlet>
<servlet-mapping>

<servlet-name>/grammars/Phrasebook.pgf/Phrasebook</servlet-name>
<url-pattern>/grammars/Phrasebook.pgf/Phrasebook/</url-pattern>

</servlet-mapping>

12

http://cloud.grammaticalframework.org

References
[ABR10] Krasimir Angelov, Björn Bringert, and Aarne Ranta. PGF: A Portable Run-time Format for

Type-theoretical Grammars. Journal of Logic, Language and Information, 19(2):201–228,
2010. 10.1007/s10849-009-9112-y.

[BAR09] Björn Bringert, Krasimir Angelov, and Aarne Ranta. Grammatical Framework Web Service.
In Proceedings of EACL-2009, 2009.

[BSS+09] Jie Bao, Paul R. Smart, Nigel Shadbolt, Dave Braines, and Gareth Jones. A Controlled Natural
Language Interface for Semantic Media Wiki. In 3rd Annual Conference of the International
Technology Alliance (ACITA’09), September 2009.

[BSVW12] F. Bry, S. Schaffert, D. Vrandečić, and K. Weiand. Semantic wikis: Approaches, applications,
and perspectives. Reasoning Web. Semantic Technologies for Advanced Query Answering,
pages 329–369, 2012.

[CFK12] John J. Camilleri, Norbert E. Fuchs, and Kaarel Kaljurand. Deliverable D11.1. ACE Grammar
Library. Technical report, MOLTO project, June 2012. http://www.molto-project.
eu/biblio/deliverable/ace-grammar-library.

[DRE12] Dana Dannélls, Aarne Ranta, and Ramona Enache. Deliverable D8.2. Mul-
tilingual grammar for museum object descriptions. Technical report, MOLTO
project, March 2012. http://www.molto-project.eu/biblio/deliverable/
multilingual-grammar-museum-object-descriptions.

[FKK08] Norbert E. Fuchs, Kaarel Kaljurand, and Tobias Kuhn. Attempto Controlled English for
Knowledge Representation. In Reasoning Web, 4th International Summer School 2008, Tuto-
rial Lectures, 2008.

[GRS12] Chiara Ghidini, Marco Rospocher, and Luciano Serafini. Modeling in a Wiki with MoKi:
Reference Architecture, Implementation, and Usages. International Journal On Advances in
Life Sciences, 4, 2012.

[Kal07] Kaarel Kaljurand. Attempto Controlled English as a Semantic Web Language. PhD thesis,
Faculty of Mathematics and Computer Science, University of Tartu, 2007.

[Kal08] Kaarel Kaljurand. ACE View — an ontology and rule editor based on Attempto Controlled
English. In 5th OWL Experiences and Directions Workshop (OWLED 2008), Karlsruhe, Ger-
many, 26–27 October 2008. 12 pages.

[KH12] Tobias Kuhn and Stefan Höfler. Coral: Corpus access in controlled language. Corpora,
7(2):187–206, 2012.

[KR93] Hans Kamp and Uwe Reyle. From Discourse to Logic. Introduction to Modeltheoretic Se-
mantics of Natural Language, Formal Logic and Discourse Representation Theory. Kluwer
Academic Publishers, Dordrecht/Boston/London, 1993.

[Kuh08] Tobias Kuhn. AceWiki: A Natural and Expressive Semantic Wiki. In Semantic Web User
Interaction at CHI 2008: Exploring HCI Challenges, 2008.

[Kuh09] Tobias Kuhn. How Controlled English can Improve Semantic Wikis. In Christoph Lange,
Sebastian Schaffert, Hala Skaf-Molli, and Max Völkel, editors, Proceedings of the Fourth
Workshop on Semantic Wikis, European Semantic Web Conference 2009, volume 464 of CEUR
Workshop Proceedings. CEUR-WS, June 2009.

[Kuh10] Tobias Kuhn. Controlled English for Knowledge Representation. PhD thesis, Faculty of Eco-
nomics, Business Administration and Information Technology of the University of Zurich,
2010.

13

http://www.molto-project.eu/biblio/deliverable/ace-grammar-library
http://www.molto-project.eu/biblio/deliverable/ace-grammar-library
http://www.molto-project.eu/biblio/deliverable/multilingual-grammar-museum-object-descriptions
http://www.molto-project.eu/biblio/deliverable/multilingual-grammar-museum-object-descriptions

[Kuh13a] Tobias Kuhn. A principled approach to grammars for controlled natural languages and predic-
tive editors. Journal of Logic, Language and Information, 2013.

[Kuh13b] Tobias Kuhn. The understandability of OWL statements in controlled English. Semantic Web,
4(1):101–115, 2013.

[LMKR09] R.A. Lotufo, R.C. Machado, A. Körbes, and R.G. Ramos. Adessowiki on-line collaborative
scientific programming platform. In Proceedings of the 5th International Symposium on Wikis
and Open Collaboration, page 10. ACM, 2009.

[MMB08] Moisés S. Meza-Moreno and Björn Bringert. Interactive Multilingual Web Applications with
Grammatical Framework. In Bengt Nordström and Aarne Ranta, editors, Advances in Natu-
ral Language Processing, 6th International Conference, GoTAL 2008, Gothenburg, Sweden,
volume 5221 of LNAI, pages 336–347, Heidelberg, August 2008. Springer.

[Pow12] Richard Power. OWL Simplified English: A Finite-State Language for Ontology Editing. In
Tobias Kuhn and Norbert E. Fuchs, editors, Proceedings of the Third International Workshop
on Controlled Natural Language (CNL 2012), volume 7427 of Lecture Notes in Computer
Science, pages 44–60, Berlin / Heidelberg, Germany, 2012. Springer.

[Ran09] Aarne Ranta. The GF Resource Grammar Library. Linguistic Issues in Language Technology,
2(2), 2009.

[Ran11] Aarne Ranta. Grammatical Framework: Programming with Multilingual Grammars. CSLI
Publications, Stanford, 2011. ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-7 (Cloth).

[RED12] Aarne Ranta, Ramona Enache, and Grégoire Détrez. Controlled Language for Everyday Use:
the MOLTO Phrasebook. In Proceedings of the Second Workshop on Controlled Natural
Language (CNL 2010), Lecture Notes in Computer Science. Springer, 2012.

[SLH03] Rolf Schwitter, Anna Ljungberg, and David Hood. ECOLE — A Look-ahead Editor for a
Controlled Language. In Controlled Translation, Proceedings of EAMT-CLAW03, Joint Con-
ference combining the 8th International Workshop of the European Association for Machine
Translation and the 4th Controlled Language Application Workshop, pages 141–150, Dublin
City University, Ireland, May 15–17th 2003.

14

	Introduction
	Related work
	Background technologies
	Attempto Controlled English
	Grammatical Framework
	AceWiki

	AceWiki-GF
	General principles and user interface
	Structure and linking
	Sentence editing
	Lexicon and grammar editing
	Multilinguality

	Multilingual ACE
	Lexicon and grammar editing
	Underlying semantic representation

	Other use cases
	Wikis based on other grammars
	Phrasebook
	Museum object descriptions

	Language design

	Implementation
	Differences from AceWiki
	GF Webservice and GF-Java
	Grammar integration
	Multilinguality
	Configuration and storage
	Performance evaluation
	Availability

	Conclusion
	Configuration example

