
On Discriminative GF models
for Parsing and Translation

Xavier Carreras, Stefan Bott, Daniele Pighin, Lluı́s Màrquez

UPC

Discriminative GF

Main goal: increase robustness of GF grammars

We look at it from a machine learning perspective.

Outline:
◮ Discriminative learning methods for parsing
◮ Applications to GF
◮ Discussion

Two subgoals

◮ Parsing: map sentence x into a structure y
◮ In GF y = (c, a), c is concrete syntax, a is abstract syntax
◮ The mapping could take a probabilistic form: p(a, c|x)

◮ Generation: map abstract syntax m into a sentence z
◮ The mapping could take a probabilistic form: p(z|a)

Two subgoals

◮ Parsing: map sentence x into a structure y
◮ In GF y = (c, a), c is concrete syntax, a is abstract syntax
◮ The mapping could take a probabilistic form: p(a, c|x)

◮ Generation: map abstract syntax m into a sentence z
◮ The mapping could take a probabilistic form: p(z|a)

Then we can implement a translator via interlingua:

p(z|x) =
∑

(c,a)

p(c, a|x) p(z|a)

Discriminative GF models

◮ Main focus: parsing
◮ Linear structured prediction model:

y∗(x) = argmax
y∈G(x)

w · F(x, y)

where
◮ G(x) enumerates derivations of x under a GF grammar
◮ F(x, y) is a feature representation of x and y
◮ w are the parameters of the model

Discriminative GF models

◮ Main focus: parsing
◮ Linear structured prediction model:

y∗(x) = argmax
y∈G(x)

w · F(x, y)

= argmax
y∈G(x)

∑

r∈y

w · f (x, r)

where
◮ G(x) enumerates derivations of x under a GF grammar
◮ F(x, y) is a feature representation of x and y
◮ w are the parameters of the model
◮ f (x, r) is a part-based feature represention

Discriminative parsing: three problems

y∗(x) = argmax
y∈G(x)

∑

r∈y

w · f (x, r)

◮ Representation: what are r ∈ y? what is f (x, r)?

◮ Inference: how to search for y∗(x)?

◮ Learning: how to obtain w from data?

Discriminative parsing: three problems

y∗(x) = argmax
y∈G(x)

∑

r∈y

w · f (x, r)

◮ Representation: what are r ∈ y? what is f (x, r)?
◮ In GF, each r is related to a production (lin and fun)
◮ f (x, r) should capture predictive features

◮ Inference: how to search for y∗(x)?
◮ With GF parsing algorithms, for weighted grammars

◮ Learning: how to obtain w from data?

Structured Prediction Framework

y∗(x) = argmax
y∈Y

∑

r∈y

w · f (x, r)

◮ Learning w from a training set of (x, y) pairs:
◮ CRFs (Lafferty et al. ’01)
◮ Structured Perceptron (Collins ’02)
◮ Max-margin methods (Taskar et al. ’03)

◮ Inference:
◮ Black box wrt. type of structures and parsing methods
◮ Required algorithms: 1-best solution, marginals
◮ Used intensively during training

Structured Prediction Framework

y∗(x) = argmax
y∈Y

∑

r∈y

w · f (x, r)

◮ Learning w from a training set of (x, y) pairs:
◮ CRFs (Lafferty et al. ’01)← probabilistic
◮ Structured Perceptron (Collins ’02)
◮ Max-margin methods (Taskar et al. ’03)

◮ Inference:
◮ Black box wrt. type of structures and parsing methods
◮ Required algorithms: 1-best solution, marginals
◮ Used intensively during training

Structured Prediction for Parsing

◮ Formalisms:
◮ CFG (Finkel et al. ’08)
◮ Dependency grammars (McDonald et al. ’05; ’06)
◮ CCG (Clark & Curran ’04)
◮ TAG (Carreras et al. ’08)

◮ Efficiency of parsing algorithms is critical for training
◮ Good features: phrase structure, head-modifier,

and lexicalized versions
◮ Some work on partial supervision:

◮ Semi-supervised representations (Koo et al. ’08)
◮ Grammar refinements (Petrov & Klein ’08; Musillo ’09)
◮ Grammar induction in CCG semantic parsing (Zettlemoyer

& Collins ’05; Kwiatkowski et al. ’10)

Structured Prediction for Parsing

◮ Formalisms:
◮ CFG (Finkel et al. ’08)
◮ Dependency grammars (McDonald et al. ’05; ’06)
◮ CCG (Clark & Curran ’04)
◮ TAG (Carreras et al. ’08)

◮ Efficiency of parsing algorithms is critical for training
◮ Good features: phrase structure, head-modifier,

and lexicalized versions
◮ Some work on partial supervision:

◮ Semi-supervised representations (Koo et al. ’08)
◮ Grammar refinements (Petrov & Klein ’08; Musillo ’09)
◮ Grammar induction in CCG semantic parsing (Zettlemoyer

& Collins ’05; Kwiatkowski et al. ’10)

Structured Prediction for Parsing

◮ Formalisms:
◮ CFG (Finkel et al. ’08)
◮ Dependency grammars (McDonald et al. ’05; ’06)
◮ CCG (Clark & Curran ’04)
◮ TAG (Carreras et al. ’08)

◮ Efficiency of parsing algorithms is critical for training
◮ Good features: phrase structure, head-modifier,

and lexicalized versions
◮ Some work on partial supervision:

◮ Semi-supervised representations (Koo et al. ’08)
◮ Grammar refinements (Petrov & Klein ’08; Musillo ’09)
◮ Grammar induction in CCG semantic parsing (Zettlemoyer

& Collins ’05; Kwiatkowski et al. ’10)

Scenario 1: ambiguous GF grammars

◮ problem: a GF grammar is ambiguous: for some
sentences it defines several derivations and some are
incorrect interpretations

eats fish with sauce
eats fish with chopsticks

Scenario 1: ambiguous GF grammars

◮ problem: a GF grammar is ambiguous: for some
sentences it defines several derivations and some are
incorrect interpretations

eats fish with sauce
eats fish with chopsticks

◮ A solution:
◮ Use p(a, c|x) to select best derivation

Scenario 1: ambiguous GF grammars

◮ problem: a GF grammar is ambiguous: for some
sentences it defines several derivations and some are
incorrect interpretations

eats fish with sauce
eats fish with chopsticks

◮ A solution:
◮ Use p(a, c|x) to select best derivation

◮ question: what kind of ambiguities are frequent in GF
grammars for MOLTO?

Scenario 2: unknown words and phrases

◮ problem: a GF grammar is too restricted: it does not
cover all lexical items of our data

the cat eats unknown food

Scenario 2: unknown words and phrases

◮ problem: a GF grammar is too restricted: it does not
cover all lexical items of our data

the cat eats unknown food

◮ assumption: the abstract/concrete types of the GF
grammar are complete

◮ A solution:
◮ Consider all possible abstract/concrete types for an

unknown word or phrase
◮ Weight each assignment with discriminative methods
◮ Use most likely assignment(s) in standard GF
◮ Use a standard SMT system to translate the unknown

phrase in context

Scenario 3: unknown concrete rules

◮ problem: a GF grammar does not cover all linearizations
of some abstract rule

the cat fish eats

Scenario 3: unknown concrete rules

◮ problem: a GF grammar does not cover all linearizations
of some abstract rule

the cat fish eats

◮ A solution:
◮ Consider all possible linearizations of abstract rules

(i.e. permutations of the terms in an abstract rule)
◮ Weight permutations with discriminative methods

e.g. the cat fish eats

eat(cat,fish)
S

cat
NP

the cat

fish
NP

fish

eat(·, ·)
VP

eats

fish(cat,unknown kind)
S

cat
NP

the cat

fish(·, ·)
V

fish

unknown kind
NP

eats

How can we predict the correct one?
◮ In this case, the correct tree (left side) has known abstract

structure
◮ In general:

◮ Features at lexical, concrete and abstract levels
◮ Let the learning methods figure out the correct weightings

e.g. the cat fish eats

eat(cat,fish)
S

cat
NP

the cat

fish
NP

fish

eat(·, ·)
VP

eats

fish(cat,unknown kind)
S

cat
NP

the cat

fish(·, ·)
V

fish

unknown kind
NP

eats

How can we predict the correct one?
◮ In this case, the correct tree (left side) has known abstract

structure
◮ In general:

◮ Features at lexical, concrete and abstract levels
◮ Let the learning methods figure out the correct weightings

A real scenario?

◮ GF grammar: both ambiguous and restrictive

◮ Is abstract syntax always reliable?

◮ Main question: what are good decompositions in GF?
◮ Efficiently parseable
◮ Allow predictive features

◮ Main challenge for robustness:
◮ How to make GF flexible (type prediction, permutations)?
◮ How to discard spurious derivations?

A real scenario?

◮ GF grammar: both ambiguous and restrictive

◮ Is abstract syntax always reliable?

◮ Main question: what are good decompositions in GF?
◮ Efficiently parseable
◮ Allow predictive features

◮ Main challenge for robustness:
◮ How to make GF flexible (type prediction, permutations)?
◮ How to discard spurious derivations?

A real scenario?

◮ GF grammar: both ambiguous and restrictive

◮ Is abstract syntax always reliable?

◮ Main question: what are good decompositions in GF?
◮ Efficiently parseable
◮ Allow predictive features

◮ Main challenge for robustness:
◮ How to make GF flexible (type prediction, permutations)?
◮ How to discard spurious derivations?

Three forms of supervision
◮ Full

◮ Training examples: sentences paired with concrete and
abstract syntax

◮ Learn a parser in the standard way

◮ Abstract
◮ Training examples: sentences paired with abstract syntax
◮ Learn a parser that induces the concrete syntax, following

(Zettlemoyer & Collins ’05)

◮ Hybrid
◮ Training examples: sentences paired with abstract syntax
◮ Take advantage of resource grammar
◮ Learn alignments between output of RG and abstract

syntax

Extra Slides

GF Deductive Rules from (Angelov ’09)

The Structured Perceptron
(Collins, 2002)

◮ Set w = 0
◮ For t = 1 . . . T

◮ For each training example (x, y)

1. Compute z = arg maxz
∑

r∈z w · f(x, r)
2. If z 6= y

w← w +
∑

r∈y

f(x, r)−
∑

r∈z

f(x, r)

◮ Return w

The Structured Perceptron with Averaging
(Freund and Schapire, 1998)

◮ Set w = 0, wa = 0
◮ For t = 1 . . . T

◮ For each training example (x, y)

1. Compute z = arg maxz
∑

r∈z w · f(x, r)
2. If z 6= y

w← w +
∑

r∈y

f(x, r)−
∑

r∈z

f(x, r)

3. wa = wa + w

◮ Return wa/NT, where N is the number of training
examples

