Machine Translation and Type Theory

Aarne Ranta

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

To Per Martin-Lof.

Abstract. This paper gives an introduction to automatic translation via examples
from the history of the field, where statistical and grammar-based methods alternate.
Grammatical Frameword (GF) is introduced as an approach that uses type theory to
provide high-quality translation between multiple languages. GF translation is funda-
mentally grammar-based but can be combined with statistical methods such as learning
translation models from a corpus and ranking translation candidates by probabilities. '

Keywords: machine translation, type theory, Grammatical Framework, multilingual
grammar

1 Introduction

Machine translation was one of the first applications envisaged for digital computers.
The need came from the U.S. military: computers would help intelligence by auto-
matically translating Russian documents to English. This enterprise was encouraged
by the success of cryptography during the Second World War. Russian was seen as an
encrypted form of English, and translation was a matter of cracking the code.

The main ideas were summarized by Weaver in 1947 (Hutchins 2000). He proposed
several approaches, but the most influential one was the use of the noisy channel model
developed by Shannon (1948). In practice, most of the early work had to do with word-
to-word translation—how to store large dictionaries and perform efficient lookup with
the machines of the time. But Weaver and Shannon also envisaged the generalization of
this model to n-grams of words. The rationale was that single words are often ambigu-
ous and have many alternative translations, but they can be disambiguated in a context.

For example, even in English has French translations such as méme (adverb), égal,
plat, pair (adjectives). In the 2-gram even number, pair is the likely translation, whereas
not even might become méme pas, as in he does not even smile. However, in the sentence
7 is not even, the adjective pair is again the right choice, which might be detected if 4-
grams are considered, and so on.

It is easy to find counterexamples to n-gram based translation for any fixed n. And
even for relatively small values of n, the method has scalability problems. A natural

! Preprint of a paper appeared in Epistemology versus Ontology. Essays on the Philosophy and
Foundations of Mathematics in Honour of Per Martin-Lof. Editors: P. Dybjer, Sten Lindstrom,
Erik Palmgren, G. Sundholm. Logic, Epistemology, and the Unity of Science Volume 27,
Springer-Verlag, 2012, pp 281-311.

language may have millions of words, if all word forms are counted separately, as cus-
tomary in approaches that don’t use grammars. The number of n-grams is exponential
in n, and sparse data becomes a problem. If the n-gram model is based on a corpus of
text, there is no hope to find all relevant n-grams. Thus the actual translation usually has
to recur to smoothing with smaller n-grams, which results in lower quality.

The problems with statistical n-gram based translation were of course known to
their developers. They did not expect the translation to give more than approximations,
or raw translations, which were to be improved by human post-processing. Alterna-
tive methods were studied in parallel. Thus Bar-Hillel soon published the idea to use
categorial grammars for translation (Bar-Hillel 1953). This was an elaboration of the
idea of Ajdukiewicz (1935) to use simple type theory to formalize the rules of natural
language. The advantage of grammar rules compared to n-grams is that they can eas-
ily cope with arbitrarily long sequences. Thus for instance, in this number was always
believed but never proven to be even, there are 8§ words between number and even, but
these words are related by grammar, which is easy to describe by Bar-Hillel’s model.
More generally, since a grammar can cover an unlimited number of sentences, it can
overcome the problem of sparse data.

Bar-Hillel devised an algorithm for what was later to be known as context-free pars-
ing. Much of his work was not possible to implement on the computers of the time and
remained theoretical, although seminal. But his most famous contribution to the field
was his eventual rejection of the whole enterprise of machine translation (Bar-Hillel
1964). He showed with some simple examples that the translation problem may require
unlimited intelligence and universal knowledge. His examples used the word pen, which
can mean either a writing utensil or a play area for children. In most languages, these
two senses of pen have two different words. Now, the two sentences the pen is in the
box and the box is in the pen probably use pen in these two different senses. But how do
we know? The knowledge does not come from grammar, but from our familiarity with
the sizes of objects in the world. Bar-Hillel concluded that fully automatic high-quality
translation is impossible, not only in foreseeable future but in principle, because there
is no hope to formalize all this knowledge.

After Bar-Hillel’s paper, the ALPAC report (Automatic Language Processing Advi-
sory Committee) was published in 1966 (Pierce & al. 1966). It presented an evaluation
of the results obtained with all the massive funding given to machine translation in the
post-war era. Its drastic conclusion was that the investment was wasted—that machine
translation had not delivered anything useful. The consequence of the ALPAC report
was that machine translation funding in the U.S. was withdrawn and the projects laid
down.

Interestingly, the main argument in the ALPAC report was not that machine trans-
lation was bound to be unreliable, but that it was too expensive. It was not denied that
machine translation can give good results, but the problem was that, to achieve these
results, so much work was needed that manual translation was cheaper. The explana-
tion pointed out was that machine translation had been pursued as pure engineering
task in an ad hoc manner—that one should first have done scientific groundwork and
described the languages before attacking the complex engineering problem of machine
translation. And indeed, what replaced machine translation as the occupation of many

groups and individuals was the field of computational linguistics, which now emerged
with more modest and realistic goals than machine translation.

In the 1970’s and 1980’s, most of computational linguistics focused on creating
mathematical language models and collecting data, rather than building ambitious ma-
chine translation systems. Many of the exceptions had to do with more modest goals
than full-scale machine translation: thus domain-specific translation systems were able
to build accurate models for limited areas such as weather reports (Chandioux 1976).
On such limited areas, one can often avoid the problem with word-sense ambiguity;
for instance, if the area is elementary arithmetic, then even can be assumed to mean
divisibility by 2. More generally, the semantics of a limited domain can be formalized
in such a way that meaning preservation becomes a rigorously defined concept.

Another idea that emerged after the ALPAC report was to make translation interac-
tive. In 1979, Kay wrote an influential paper (eventually published as Kay 1997) that
showed with more examples in the spirit of Bar-Hillel that proper translation needs
human judgement. Many of Kay’s examples had to do with the interpretation of pro-
nouns. For instance, il in French can be translated by both he and it in English. Thus
il est possible que... becomes it is possible that. .., whereas il est convaincu que. ..
is more likely to become he is convinced that. ... Translating the pronoun is, just like
lexical disambiguation in Bar-Hillel’s case, the matter of an unpredictable amount of
information about the context of use and the world.

We will return to the problem of translating pronouns in Section 4. Kay’s main sug-
gestion was that, since there is no automatic solution, translation tools should make
human intervention seamless—must more seamless than post-processing. This idea in-
deed led to practicals tool widely used by professional translators—basically text edi-
tors in which translation is performed manually. Such tools are equipped with a trans-
lation memory—a repository of sentences and phrases translated earlier, reducing the
need of translating the same phrase more than once.

The post-ALPAC pessimism around machine translation was finally removed at the
end of the 1980’s, in the project funded by IBM and led by Jelinek (Brown & al. 1990).
The “IBM approach” was another try with Shannon’s noisy channel model and n-grams,
but now with the benefit of more powerful computers, adequate bilingual training data
(from the Canadian parliament), and experience from statistical speech recognition like-
wise conducted by Jelinek a decade earlier (Jelinek 2009). A mathematician and engi-
neer himself, Jelinek was disappointed by the over-sophisticated and complex models
of linguists, which required so much human effort and gave so little concrete results.
The IBM approach created with relatively little effort a system that performed fully
automatic translation of unlimited text.

The quality reached by the IBM approach was not perfect, but it was continuously
improved, and methods were developed for building translation systems with minimal
human intervention. The most prominent achievement of this approach is Google’s on-
line translation system (translate.google.com), which at the time of writing
covers 57 languages. Google translate is robust in the sense that it produces a result for
any input. Moreover, it has been created with a minimal human effort, in particular, with
no or little linguistic knowledge about the languages involved. Instead of linguistics, it
uses techniques such as phrase alignment (Och and Ney 2004), which extract combi-

nations of words (“phrases”) and their translations from parallel texts. Actually, it has
become a rule of the game that no linguistic, language-specific knowledge may be used,
but translation systems must be built by language-neutral algorithms. This can require
a lot of data, because alignment can be a many-to-many relation and work on a long
distance. The following picture shows a set of alignments between English, Finnish,
French, and German.

le

the chat
musta

black noir
kissa

cat

die

schwarze

Katze

ne

hatte

ei

hadn't

nous

ollut uns

avait

seen

nihnyt nicht

/ /NN N

us pas

NN YN Y

meitid geschen

vus

One of Google’s obvious strengths in machine translation is that the company has
access to so much text, perhaps more than any other organization in the world. In this
field, “there is no data like more data”. Hence, if anyone is able to solve problems by
introducing more data, then Google should be. Nevertheless, the results are not satis-
factory in all respects. Google translate is useful in giving quick rough translations, and
impressive in its speed of increasing the number of languages. But its quality cannot
be trusted, and it is doubtful whether it can ever become fully reliable. This is due to
the general reasons given by Bar-Hillel and Kay, but also to the specific limitations of
purely statistical language models. To remove the latter kind of problems, much of the
current research in machine translation targets hybrid models, which combine statistical
processing with linguistic information (Lopez 2008 gives an excellent survey of such
methods).

2 Models of Translation

The history of machine translation shows a back and forth movement between statistical
and ruled-based methods. In its purest form, statistical translation is Shannon’s noisy
channel decoding based on n-gram probabilities. Rule-based translation, on the other
hand, applies manually written translation functions and performs disambiguation by
deep semantic analysis. This model is actually the same as is used in compilers for
programming languages.

A compiler is a translator from a source language, such as C or Java, to a target lan-
guage, such as the Intel x86 machine language or JVM (Java Virtual Machine). In early
times, compilers were implemented as transducers directly converting source code to
target code. This was accomplished by means of semantic actions attached to the gram-
mar rules of the source language; the mathematical model of this was given in the at-
tribute grammars of Knuth (1968). For example, the rule for addition expressions could
look as follows:

Exp ::= Exp "+" Exp
{ compile $1 ; compile $3 ; emit (ADD (type $1 $3)) }

This rule implements infix expressions with the operator +. It compiles the first operand
$1 (emitting whatever code belongs to it), recognizes the + sign (which would be de-
noted by $2), compiles the second operand $ 3, and finally emits the ADD instruction
computed from the types of the operands by the attribute t ype. This attribute makes it
possible to use an overloaded addition operator in the source language, at the same time
as the machine language typically has separate addition instructions for integers, float-
ing point numbers, etc. Notice that the resolution of overloading is similar to word sense
disambiguation in natural language translators: the source language can have words
such as even in English, which require an inspection of the operands (e.g. the nound
modified) to decide about the correct translation in a target language like French.

Semantic actions in transducing compilers can be very complex, since they simulta-
neously define several different operations, such as type checking and code generation
in the example above. Furthermore, one-pass transduction poses serious constraints on
the source language, which has to be closer to machine languages and thus less natural
for humans than modern high-level programming languages are. For instance, mutual
recursion is difficult to deal with in one-pass compilers.

Modern compilers thus favour several passes, most of which operate on an abstract
syntax, which is an intermediate representation between the source and the target lan-
guage (Appel 1998). The abstract syntax can be formalized as a system of datatypes,
where the data objects are abstract syntax trees. The first phase of the compiler is pars-
ing, which converts the source code string into an abstract syntax tree. The last phase
is linearization, which converts abstract syntax into target code. Between these phases,
several operations of code analysis and optimization can be performed to manipulate
the abstract syntax tree. For instance, GCC (the GNU Compiler Collection, Stallman
2001) can make dozens of passes before emitting the target code.

In addition to modularizing the compiler, the use of an abstract syntax makes it
language-neutral: it can be applied to new source and target languages by just changing
the parsing and linearization components. The hard work (semantic analysis and opti-
mizations) is performed on the abstract syntax level. Thus GCC, which was originally
created for translating C into Motorola 68020, currently supports several source and
target languages.

The two compilation methods discussed above have counterparts in the translation
of natural language. The transduction model corresponds to transfer, i.e. translation
functions defined separately for each pair of languages. The abstract syntax model cor-
responds to interlingua. Just like in compilers, the interlingua is an abstract representa-
tion of meaning, and translation is performed by meaning-preserving mappings between
the interlingua and the languages involved. Thus the translation from English to French
is the composition of first translating English to the interlingua and then the interlingua
to French.

The advantages of the interlingua approach are the same in machine translation as in
compilers. A well-designed, semantically grounded interlingua is an excellent platform
for the analysis of the source language, and tasks such as word sense disambiguation
and anaphora resolution. It is also useful when selecting the most natural expressions

in the target language—an operation similar to optimizations in the case of compilers.
Another advantage is similar to the multi-source multi-target compilers: work is saved,
both in the semantic operations (which are language-independent) and in the number
of translation functions. An interlingual system involving n languages needs just 2n
functions: from each language to the interlingua and back. If separate transfer functions
were used for each pair of languages, n(n-1) functions would be needed for n languages.

The transfer/interlingua distinction is orthogonal to the statistical/rule-based dis-
tinction. In both types of translation, it is the interlingua approach that scales up into
highly multilingual systems. Thus Google translate uses an interlingua for most of its
57 x 56 language pairs. This interlingua is English (as confirmed by Franz Och in per-
sonal communication).

From the semantic point of view, English (or any natural language), might sound
like a strange interlingua, because it is ambiguous and destroys distinctions found in
other languages. To take a typical example, the distinction between singular and plural
you disappears in English. Consequently, the translation between, for instance, Swedish
and French is not guaranteed to preserve this distinction. Swedish jag dglskar dig (“I love
you” (singular/familiar)) and jag dlskar er (“I love you” (plural/polite)) are currently
both translated as je t’aime (“I love you” (singular/familiar)), although the plural/polite
form should be translated je vous aime.

Nevertheless, English is probably the best choice for training statistical translation
models, because there is much more data available for Swedish and English in parallel
and for French and English in parallel than for Swedish and French in parallel. There
is, moreover, a compelling reason for using a natural language as an interlingua: there
simply is no formal language capable of expressing everything that can be expressed
in natural languages. This requirement for an interlingua was formulated already by
Descartes in 1629, when he proposed a universal language that would support transla-
tion:

[the universal language must] establish an order among all thoughts that can
enter in the human spirit, in the same way as there is a natural order among
numbers, and as one can learn in one day the names of all numbers up to infinity
and write them in an unknown language, even though they are an infinity of
different words. ..

The invention of this language depends on the true philosophy; for it is im-
possible otherwise to denumerate all thoughts of men and order them, or even
distinguish them into clear and simple ones. . .

(Descartes, letter to Mersenne 1629)

The need of such precision, of a “true philosophy”, is demonstrated by the examples of
Bar-Hillel and Kay: if the interlingua were to determine how to express the meaning of
the source in the target language, it has to be unambiguous and make all the required
distinctions. Now, as centuries of philosophers and logicians have in vain been looking
for such a formalism, shouldn’t we admit that it is just an unrealistic dream?

A natural idea is to use logic and type theory when building an interlingua. An early
proposal to this effect was made by Curry (1961). It was applied at a larger scale in the
Rosetta system (Rosetta 1994) at Philips. Rosetta was based on the grammar and logical
semantics of Montague (1974). They were generalized from English to a multilingual

grammar in a way that contained many ingredients of the method discussed in Section
6.

3 A Framework for Translation

The previous discussion has identified two distinctions within machine translation:

— statistical vs. rule-based
— transfer vs. interlingua

We will now propose a framework for translation, which is rule-based and uses an
interlingua. But we will later show how this model can be extended with statistical
components and transfer. We will also meet the main challenge of the ALPAC report
and show that the framework is economically viable and useful.

The framework has the same structure as multi-source multi-target compilers: a
translator consists of an abstract syntax together with mappings to and from concrete
languages. The concrete languages can be varied ad libitum; the technique should apply
to all natural languages. But it can also deal with formal languages, in tasks such as
translating between predicate logic and English.

While having the same structure as GCC, a translation framework must be more
general, so that it can deal with different subject matters and not only with computer
programs. Thus it must have a more expressive abstract syntax than GCC. It might seem
that we would need the power of a universal interlingua—but fortunately we don’t. In-
stead, we apply the idea of a logical framework (LF, Harper & al. 1993), originally
designed to be a framework for defining logics, as a framework for defining interlin-
guas. Then we can define domain-specific interlinguas, corresponding to semantically
coherent and formalizable domains. To coin a slogan, the Rosetta stone is not a monolith
but a boulder field.

Logical frameworks were born in the constructivist tradition, which abandoned the
idea of a monolithic foundation of mathematics. Instead of reducing all mathematics
into one formal theory, such as axiomatic set theory, a logical framework makes it pos-
sible to define separate theories for different parts of mathematics. With the expres-
sive power of dependent types, this extends to the possibility to define new systems
of inference rules, that is, new logics. The framework itself doesn’t determine a logic,
but provides an infrastructure with a common notation, algorithms for proof checking
and proof search, and a generic user interface. Ever since the early times of LEGO
(Luo and Pollack 1992), Coq (Dowek & al. 1993), and ALF (Magnusson 1994), logi-
cal frameworks have provided an economical way to implement logics and experiment
with them. Due to the infrastructure provided by the framework, the implementation of
a new logic boils down to writing a set of declarative definitions.

The logical frameworks LEGO and ALF were based on the constructive type theory
of Martin-Lof (Martin-L6f 1984, Nordstrom & al. 1990). Constructive type theory has
also proven usable for meaning representation in natural languages (Ranta 1994). The
type checking and proof search machinery provided by a logical framework gives tools
for the kind of semantic analysis needed in machine translation. What is missing are the
parsing and linearization functions for the natural languages themselves. To fulfill this

need, the Grammatical Framework, GF (Ranta 2004, 2011), was developed. GF is an
extension of a logical framework with a component called concrete syntax.

If LF is a framework for defining logics, GF is a framework for defining multilingual
grammars. A multilingual grammar is a pair

< A {Cy,...,Ch} >

where A is an abstract syntax (a logic in the sense of LF) and Cy, . ..,C,, are concrete
syntaxes. A concrete syntax is a mapping between the abstract syntax trees of A and
the strings in some string language, such as English, French, Java, or JVM.

As a first example of multilingual grammars in GF, consider the translation of addi-
tion expressions. The abstract syntax defines a function (fun), and each concrete syntax
defines a linearization (1in). The following grammar covers Java, JVM, English, and
French.

fun EPlus : Exp —-> Exp —> Exp

lin EPlus x y = x ++ "+" ++ vy

lin EPlus x y = x ++ y ++ "iadd"

lin EPlus x y = "the sum of" ++ x ++ "and" ++ vy
lin EPlus x y = "la somme de" ++ x ++ "et de" ++ vy

The 11in rules of GF are reversible mappings: they can be used both for the linearization
of trees into strings and for the parsing of strings into trees. How to do linearization is
obvious: just think of the 1in rules as clauses in the definition of a recursive function,
where the variables x and y stand for the linearizations of the arguments. The parsing
direction is more tricky and can be stated as a search problem. A general solution was
found by Ljunglof (2004), who moreover showed that the parsing complexity in GF is
polynomial.

The above example is a valid GF grammar, but it is oversimplified in many ways.
First we might notice that the abstract syntax fun rule doesn’t indicate the type of the
expression (integer, float, etc). The JVM rule is, in an arbitrary way, directed to integer
addition (iadd) only. But this problem can be solved by making Exp into a dependent
type, which takes the object language type (type Typ in this grammar) as its argument.
Then we can write

fun EPlus : (t : Typ) —> Exp t —-> Exp t -> Exp t
to force the operands and the value to be of the same type, and

lin EPlus t x y = x ++ y ++ add t
to select the proper JVM instruction add t as a function of the type t. (Precisely how
the add function is defined in GF is omitted here.) In the other three languages, the

type argument is suppressed. For instance,

lin EPlus _ x y = X ++ "+" ++ y

We use the wildcard __ for arguments that are suppressed, that is, don’t appear on the
right of the equality sign. Now assume the following rules for numeric literals and
program variables, with linearizations in Java:

fun EInt : Int -> Exp TInt
lin EInt i = 1

fun EVar : (t : Typ) —-> Var t -> Exp t
lin EVar _ v = v
In JVM, the type of the variable has to be known by the instruction that loads the values
of variables from memory:

lin EVar t v = load t v

As Java suppresses the type arguments of EP1us and EVar, the expression 2 + x is
initially parsed by introducing metavariables:

EPlus ?1 (EInt 2) (EVar 2?2 Xx)

If x is an integer variable, well-known algorithms for type checking and constraint
solving, similar to those used in ALF (Magnusson 1994), now manage to instantiate the
metavariables:

EPlus TInt (EInt 2) (EVar TInt x)
From this syntax tree, we can generate the JVM code

iconst_2
iload_0
iadd

which uses the i (integer) variants of the 1oad and add instructions. (It moreover
maps the variable x to the memory address 0, but we omit the details about how this is
done.)

4 Types and Disambiguation

Although the translation of 2 + x to JVM is elementary, it illustrates some fundamen-
tal aspects of machine translation:

— word order can vary from one language to another (here: infix in Java, postfix in
JVM)

— one language may suppress information that another language needs (here: the type
of the addition operator)

— suppressed information can be restored by semantic analysis (here: type checking
and metavariable solving)

A natural language example with the same features is anaphora resolution, that is, the
interpretation of pronouns. Consider the following examples (from Hutchins & Somers
1992):

the monkey ate the banana because it was hungry
the monkey ate the banana because it was ripe
the monkey ate the banana because it was tea-time

The focal point is the pronoun it. The proper translation into German is different in each
of the three sentences. In the first one, if refers to the monkey (der Affe), and becomes
the masculine er. In the second one, it refers to the banana (die Banane), and becomes
the feminine sie. In the third one, it is the formal, impersonal subject, translated by the
neutrum pronoun es.

What is the algorithm for translating if in the three described ways? As is clear from
the explanations given to each translation, it has to do with the reference of the pronoun,
not just its syntactic form. It also has to do with the fype of applicability of the adjective
that it predicated of the pronoun. The outline of the algorithm presented in Ranta (1994)
is the following:

1. Analyse the context of the pronoun to collect all possible referents with their types,

thus forming the referent space {r1 : Ry,...,r, : R,} of objects given in the
context.
2. Analyse the occurrence of the pronoun and collect all types {77, ..., T,,} that an

object may have in that position.
3. Consider the set of those elements r; : R; whose type ; matches some of the types
T;.
(a) If the set is singleton {r; : R;}, then r; is the referent and its type is R;.
(b) If the set is empty, then report an anaphora resolution error (or widen the refer-
ent space).
(c) If the set has many elements, then ask the user to disambiguate interactively
(or look for more constraints in the context).

This algorithm does a half of the job—it finds the referent of the pronoun with its type.
The other half is to generate the translation. But this part is easy once the referent and
its type are found, because pronouns can be given the abstract syntax

fun Pron : (t : Typ) -> Ref t -> Exp t

and the German concrete syntax chooses the proper word as a function of the gender of
the type,

lin Pron t _ = case (gender t) of {
Masc => "er"
Fem => "gie" ;

Neutr => "es"

}

(showing only the nominative forms for simplicity). When the parser encounters the
English pronoun iz, the initial abstract syntax tree is

Pron 2?1 22

But as soon as the resolution algorithm has found a value for 21, the translation can be
performed.

The above algorithm is a sketch, as it uses undefined concepts and leaves alterna-
tives open. First, we need to know how to “analyse the context”. We use context in the
technical sense of type theory: the sequence of variables with their types that are in
scope. This context is maintained by the type checker when it analyses the syntax tree.
The possible referents, then, are a closure of the context under simple operations such
as the projections p and q of Sigma types. Ranta (1994) explains in more detail how
different constructs of natural language contribute to the context.

Secondly, what are the types that “an object may have at the position” where the
pronoun occurs? This can be defined by considering the wider syntax tree around the
pronoun. In general, there can be many such trees because natural language is syntacti-
cally and lexically ambiguous. These trees have the form ¢;(z), where z is the slot for
the pronoun. The types T; : {T1,...,T,,} are thus all the types that = can have in all
the trees ¢;(x). In addition, the pronoun of the type T; must be the one actually being
resolved (i.e. have the same gender); this is the only condition referring to concrete
syntax in the algorithm, which otherwise works on the abstract syntax level. (Notice
that we have here assumed that the number of types is finite; if this doesn’t hold, the
problem may become undecidable.)

The third concept left undefined is type matching. The baseline is equality: I2; = T}.
But this can be extended by using techniques such as coercive subtyping (Luo and
Callaghan 1999). Johannisson (2005) and Angelov and Enache (2010) show how to do
this in GF. Considering the first of the examples above, the predicate hungry might be
defined as a propositional function over animals,

fun Hungry : Exp Animal -> Prop
The monkey, on the other hand, might be introduced as a referent of type Monkey,
r : Ref Monkey
But a coercion
c : Exp Monkey —-> Exp Animal
will establish
c (Pron Monkey r)

as a possible argument of Hungry. Notice that we use the coercion on the Exp level
rather than Re £, so that the gender of the subtype is preserved.

Fourthly, what does it mean to widen the search space when no referent is found?
One way is to widen the class of the operations under which the referent space is closed.
Subtyping coercions can be seen as an instance of this, but any functions may have
to be considered. This shows that anaphora resolution can be as hard as proof search
in general. Another way is to widen the context that generates the search space. For

instance, if the referent cannot be found in the same sentence as the pronoun, earlier
sentences may have to be taken into account. One reason for the undecidability found
by Bar-Hillel (1964) and Kay (1997) is that the search space may be infinite.

Fifthly, what does it mean to look for more constraints when the referent is not
unique? One possibility is to shrink the search space. For instance, if the context has
been widened by earlier sentences, priority can still be given to referents found in later
ones. Another possibility is to use probabilities. Consider, for instance,

the monkey ate the banana because it was so sweet
the monkey ate the banana because it had fallen from the tree

The above algorithm may construct both the monkey and the banana as possible argu-
ments, but one of them may be more likely, and this can be defined by using proba-
bilistic GF grammars (see Section 8 below). However, in the end maybe none of the
referents comes out as the clear winner, or the translation task may be so critical that
no guesses are tolerated. It is in these cases that the system may need user input and
hence be interactive. In a good translation system, interactive disambiguation should
be smooth and intuitive. The systems should, for instance, not display types or abstract
syntax trees, but rather pose simple questions in natural language, in a manner similar
to how a human would do: do you mean the monkey or the banana?

In its full generality, type-theoretical anaphora resolution is undecidable—just as
the arguments of Kay (1997) suggest. The translation of large documents may preclude
the use of interaction. But the algorithm can still be seen as the specification of what
anaphora resolution should ideally do. Practical approximations can be created by omit-
ting too complex proof search or far-away parts of the context.

Also statistical models can give approximations of anaphora resolution: since all
words in it was hungry fit into one 3-gram, it may well happen that a model “knows”
that iz is related to hungry and guesses the translation of the pronoun right.

5 User Interaction

As fully reliable translation cannot be fully automatic, user interfaces are an essential
part of machine translation. Post-processing bad machine translation is hardly a suf-
ficient form of interaction; one of the conclusions of the ALPAC report (Pierce & al.
1966) was that translators found it slow and unpleasant, and would have preferred man-
ual translation from the beginning. In grammar-based translation, grammars that are
accurate enough for translation can hardly be complete. Hence their users easily end
up in situations where the input is not recognized, and the response from the system is
“syntax error”. While this is accepted in compilers, where the grammars can be learnt
from manuals, it is hardly acceptable in parsers of natural language, where grammars
are theoretical constructs not known by native speakers.

The model that has been applied in the user interfaces of GF is that of a syntax edi-
tor (Teitelbaum and Reps 1981, Donzeau-Gouge & al. 1975). Syntax editors have been
a standard interface for logical frameworks, where they are backed by a rich metatheory
of editing actions (Magnusson 1994, Norell 2007). The main idea of a syntax editor is
that the user is manipulating abstract syntax trees and not texts; the text is just a special

view of the tree, produced by linearization. One advantage of syntax editors is that they
avoid the problem of parsing. An early application of this was the WYSIWYM system
(“What You See Is What You Mean”, Power and Scott 1998), which replaced transla-
tion by multilingual generation. The user of WYSIWYM would directly construct an
abstract representation, from which translations in different languages were generated
automatically.

Pure syntax editing can however be heavy and slow, and it requires the awareness of
an abstract, sometimes complex, structure. When comparing parsers and syntax editors,
Welsh & al. (1991) ended up recommending pluralistic editors, which combine parsing
and syntax-based editing. Now, since parsing has been supported for GF grammars from
the beginning, the syntax editors built for GF have been pluralistic (Khegai & al. 2003).
Their basic functionality is the stepwise construction of syntax trees by refinements,
which are selections of constructors that build trees in a top-down fashion. For example,
the construction of an arithmetic expression can have as its intermediate state the tree

EPlus ?1 22

In this state, a refinement is expected for the first metavariable, ?1. This refinement can
be selected from a menu, which contains all constants and variables whose value type
is possible for ?1. In this case, the menu might contain the constructors EInt, EVar,
and EP1us. If EP1us is selected, the next state is

EPlus (EPlus 2?11 ?212) 22

However, as the editor is pluralistic, it also accepts an expression written in a concrete
syntax as a refinement. Refining 2?1 by the sum of x and 5 would thus result in

EPlus (EPlus (EVar x) (EInt 5)) 22

compressing five refinement steps into one short string. Since the editor continuously
type-checks the tree, it of course makes sure that the variable x is actually available in
context and has a correct type.

The disadvantage of parsing compared with syntax editing is that syntax errors are
possible. Fortunately, a pluralistic editor can solve this issue by incremental parsing—a
process in which the input is analysed word by word, and the set of possible next words
is computed after each word. Thus a user may start typing

every number is _
and get a list of suggestions: divisible, equal, even, not, odd, prime, etc. Every sug-
gestion is guaranteed to lead, eventually, to a correct sentence and thereby an abstract
syntax tree. If the list of suggestions is long, it can be narrowed down by typing the

beginning of a word: with

every number is e_

only words beginning with an e are suggested. If the incremental parsing algorithm is
efficient and the interface well implemented, its usage can be as fast as the input of
free text. It can even be faster, because typos are excluded and unique word choices
can be auto-completed. Angelov (2009) defines the incremental parsing algorithm ac-
tually used in GF. A later version of the algorithm (used in Angelov and Enache 2010)
integrates dependent type checking and variable binding analysis to narrow down the
suggestions to semantically correct ones.

For most users, incremental parsing is the method of choice when source text is
created in the first place. However, syntax editing can still be useful in later edits of a
text. Consider the following business letter written in French:

Chére Madame X, j’ai ’honneur de vous informer que vous avez été promue
chargée de projet.

("Dear Mrs X, I have the honour to inform you that you have been promoted to a project
manager"). If Mrs X declines and the letter is sent to Mr Y instead, just changing the
recipient will result in

Chére Monsieur Y, j’ai I’honneur de vous informer que vous avez été promue
chargée de projet.

The boldface parts of the letter are now grammatically incorrect, since they are in fem-
inine forms, in agreement with Madame X; embarrassingly, they may disclose to Mon-
sieur Y that he was not the first choice for the position. But this embarrassment can
be avoided if the letter is constructed in a syntax editor and the abstract syntax tree is
saved. If the tree has the form

Letter (Dear (Mrs X)) (Honour (Promote ProjectManager))
then the one-place change of Mrs X toMr Y results in
Letter (Dear (Mr Y)) (Honour (Promote ProjectManager))

Now the linearization knows how to inflect the relevant parts in agreement with the new
recipient, which results in the letter

Cher Monsieur Y, j’ai I’honneur de vous informer que vous avez été promu
chargé de projet.

Boldface is here used for marking the parts that have changed as a result of agreement
and are now correct.

At the end of the previous section, we identified disambiguation as a critical part
of interactive systems. Parsing user input may lead to several trees from which only
the user is able to choose. The simplest way to display the alternatives is to show the
abstract syntax trees, but this is hardly user-friendly, and we want the translation sys-
tem to be usable without awareness of the abstract syntax. An alternative is to use a
disambiguation grammar—a grammar that is similar to that of the source language, but
contains supplementary information that makes it unambiguous.

Consider, for example, the disambiguation needed in the example with the donkey
ate the banana. Since no humans are involved, the English grammar for pronouns could
be simply

lin Pron _ _ = "it"

A disambiguation grammar for translation into German should make at least the type
explicit.

lin Pron t _ = "it" ++ "(" ++ "the" ++ t ++ ")"

Hence, the question posed to the user when translating it had fallen from the tree would
display the menu items: it (the donkey) and it (the banana). Full disambiguation would
of course also show the referent:

lin Pron t r = "it" 44+ " (" +4+ "the" ++ t ++ r ++ M) "

As illustrated by the MOLTO Phrasebook (Angelov & al. 2010), disambiguation gram-
mars can be constructed with minor additions to the original, ambiguous grammars.

6 Variations in Concrete Syntax

How is it possible for different languages to share an abstract syntax? We have mainly
considered two ways of achieving this: in different concrete syntaxes,

— words can be different;
— the order of words can be different.

However, more freedom is needed to enable an abstract syntax really to abstract away
from language-dependent facts. Fortunately, two more things have proven to be enough
to achieve this:

— parameters: words and phrases can have different inflectional forms and features;
— discontinuity: the translation of a word can consist of separate parts.

Let us first consider the parameters. English verbs (with the exception of be) have five
forms, exemplified by write, writes, wrote, written, writing. German verbs have at least
20 finite forms, and moreover dozens of adjectival forms of the participles. French
verbs have 51 forms, Latin verbs a couple of hundreds, Finnish verbs several thousands
depending on how one counts. The grammar of each language has to define precisely
how these forms are created for each verb and how they are used in sentences. Yet we
want to have, in the abstract syntax, a common category of verbs, and common rules
(i.e. functions) for combining verbs with their subjects and objects.

Here is an example: a function that forms a sentence (S) by combining a two-place
verb (V2) with a subject and an object. The subject and the object are noun phrases
(NP), such as pronouns (she), proper names (Mary), or nouns with determiners (the
banana). The abstract syntax thus has three categories and one function:

cat S ; V2 ; NP
fun Predv2 : V2 -> NP -> NP -> S

To achieve a complete description in little space, let us restrict the grammar to present
indicative sentences. The simplest possible concrete syntaxes are

lin PredV2 v s o = s ++ v ++ ©
lin PredV2 v s o s ++ o ++ v

and four other permutations; thus there is no problem to treat so-called SVO and SOV
languages with the same abstract syntax. Swedish is almost as simple as this, since
the verb has just one form for the present indicative. However, pronouns have separate
nominative and accusative forms, used for the subject and the object, respectively. Thus
for Swedish, we have to change the linearization type of noun phrases from strings to
tables, which assign a string to each of the cases nominative and accusative. We write

lincat NP = Case => Str

to say that noun phrases are linearized to case-to-string tables. We write
param Case = Nom | Acc

to define the parameter type of cases in Swedish. And finally, we write
lin PredvV2 v s o = s ! Nom ++ v ++ o ! Acc

to linearize subject-verb-object sentences in Swedish. The selection operator ! is used
for retrieving values from tables. The tables themselves are given with a special expres-
sion form, as shown in the rule for the pronoun she:

fun She : NP
lin She = table {Nom => "hon" ; Acc => "henne"}

German is more complex than Swedish in three ways: noun phrases have four cases
instead of two; verbs have five forms instead of one; and the object can have differ-
ent cases depending on the verb. For instance, lieben (“love”) takes its object in the
accusative, but folgen (“follow”) in the dative. We need a more complex system of pa-
rameters and linearization types:

param Case = Nom | Acc | Dat | Gen

param Number = Sg | Pl

param Person Perl | Per2 | Per3

lincat NP = {s : Case => Str ; n : Number ; p : Person}
lincat V2 = {s : Number => Person => Str ; c¢ : Case}

These linearization types use yet another data structure provided by GF: records. A
record is a collection of objects of possibly different types. Thus the German NP has
a case-to-string table, a number, and a person. These objects can be retrieved from the
record by the projection operator . (dot). Now we can write a German linearization rule
that selects the correct forms of the subject, the verb, and the object:

lin Predv2 v s o = s.s ! Nom ++ v.s ! s.n ! s.p ++ o.s !

V.

C

Even though this rule is more complex than the Swedish rule, the abstract syntax is still
the same. To see how much they differ, consider the language fragment generated from
two verbs and three pronouns. The abstract syntax trees are given by the expression

PredV2 (Love|Follow) (I]|You|She) (I]|You|She)

where | marks alternatives. Thus there are 18 different trees (which include questionable
ones such as I love me). The following picture shows finite automata representing the
concrete syntaxes, Swedish on the left and German on the right. The German automaton
is more complex. One can notice, for instance, that the number of different words (word
forms) is almost twice the number of word forms in Swedish (14 vs. 8).

OIOSE)

3@
’)%5‘(‘*0» o
e

00\

The higher the number of word forms in a language, the less probable is the oc-
currence of each word in a corpus. This is a problem for statistical string-based lan-
guage models. For instance, a system may fail to find some less common German verb
forms at all. A remedy to this is to introduce grammatical knowledge into the system
by analysing the words into their dictionary forms and morphological description tags.
Thus for instance

du folgst mir
becomes something like
du<+Pron+Nom> folgen<+Verb+Ind+Pres+Sg+2> ich<+Pron+Acc>

Then an n-gram model can be built for the sequences of description tags, which are
much more frequent than the verb forms, and the translations of dictionary forms can
be defined separately. This idea is known as factored translation models and studied in
Koehn and Hoang (2007).

A prime example of discontinuous constituents are the compound verbs of Ger-
manic languages. Thus the German verb umbringen (“kill”’) consists of the verb bringen
(“bring”) and the particle um (“‘around”). In the sentence

er bringt mich um

(“he kills me”, word to word “he-brings-me-around”), these parts fit into one and the
same 3-gram, whereas in

er bringt meinen besten Freund um

(“he kills my best friend”) the chances are that a purely statistical system misses the
whole point of the sentence.

In GF, discontinuous constituents can be modelled with records. Thus we extend
the German linearization type of V2 with a field for the particle:

lincat V2 = {s : Number => Person => Str ; p : Str ; c
The predication rule becomes correspondingly

lin Predv2 v s o =
s.s ! Nom ++ v.s ! s.n ! s.p ++ o.s ! v.c ++ v.p

The full grammar of subject-verb-object predication is of course much more com-
plex than shown above. In German, we have to take into account the word order vari-
ation in main clauses and subordinate sentences. In French, the position of the object
is different for pronouns from heavier noun phrases (je t’aime “I-you-love” vs. j'aime
Marie “I-love-Marie”), with subtle agreement differences in compound tenses, and so
on. Nevertheless, the two data structures of GF (tables and records) have proven suffi-
cient for the expression of all these rules in a compact and efficient manner. Thus the GF'
Resource Grammar Library (Ranta 2009a) covers a large fragment of syntax of 16 lan-
guages using the same abstract syntax for all languages. As we will see in next section,
this library plays a key role in the economical production of translation systems.

Interestingly, the GF Resource Grammar Library also demonstrates that the mor-
phology and syntax, despite huge differences in surface variation, has a similar com-
plexity in each language. This is not only reflected in the shared abstract syntax, but
also in the size of the source code. The following table shows the code size for the
concrete syntaxes of one and the same abstract syntax for four languages in the library,
together with relative standard deviations and the maximum-to-minimum ratios. While
the “GF source” column shows little variation, the low-level generated code rules varies
much more. The “compressed PGF” column gives the size of the binary code generated
by the GF compiler to implement parsing and linearization at run time, compressed by
bzip2. The “context-free” column gives the number of rules in a context-free grammar
generated as a conservative approximation of the PGF. The “words” column gives the
total number or words in the PGF, optimized by a restriction to the words reachable
from the start category.

language|GF source|compressed PGF|contex-free words
English 3300 49000 48000| 1900
German 3400 67000 63000| 4400
French 5400 84000 66000 4100
Finnish 4200 103000 19200021000
rel. stdev. 0.21 0.26 0.63| 0.97
max/min 1.9 2.1 4.0 11

Case}

The numbers of context-free rules and words reflect the complexity of the language
on a low abstraction level, whereas the GF code reflects the amount of information
needed for defining the language on a high abstraction level. The PGF size also involves
an abstraction in the sense of redundancy reduction due to compression and underlying
compiler optimizations such as common subexpression elimination.

7 Grammar Engineering

The figures at the end of the previous section suggest that implementing a grammar in
GF is not significantly harder for a “complex” language like Finnish than for a “simple”
language like English. This result holds for grammars that exploit all the abstractions
available in GF. If the grammars had to be written in context-free format, the differ-
ences would be much larger. If the language models had to be constructed from the
occurrences of words, German and French would need more textual data than English,
and Finnish would need even more. This is illustrated by the fact that a Google translate
from Finnish often returns Finnish word forms untranslated.

Despite the compactness of GF, grammar writing is not easy. It requires a lot of
linguistic knowledge, and only a part of this can be found in standard reference books,
in particular as regards syntax. These difficulties may have been a major obstacle to the
popularity of grammar-based domain-specific precision-oriented translation systems.
While good quality can be reached with the use of grammars on limited domains, writ-
ing these grammars is time-consuming. Moreover, it requires the joint competences of
a linguist and a domain expert, for instance, a mathematician when building a transla-
tion system for mathematical texts, or a car engineer when translating car maintenance
manuals.

When the first multilingual GF grammars were built for a few domains (mathe-
matics, tourist phrasebooks, restaurant database queries, medical drug descriptions), it
soon become obvious that the same linguistic problems arose over and over again. This
was the main reason for starting to build the GF Resource Grammar Library (cf. Ranta
2009b). Now that the library is complete for a large fragment of language, it is clearly
the most important factor in enhancing the productivity in building translation systems.
The library has a high-level API (Application Programmer’s Interface), which corre-
sponds to an abstract syntax and hides the details like word order, inflection, agreement,
and discontinuities. The API is, moreover, language-independent, so that the grammar
code for one language can also be used for other languages covered by the library.

To take an example of the use of the library, consider a concept such as x knows y,
a two-place relation between persons. This might be needed in a translation system for
social fora, and defined by the abstract syntax predicate

fun Know : Person —-> Person -> Fact

The concrete syntax can be defined by means of the resource grammar by using NP
(noun phrase) as the linearization type of persons and Cl (clause) as the linearization
type of facts. The library API displays a function

mkCl : NP —> V2 —> NP —-> C1l

for building a clause from a subject, a two-place verb, and an object. The library more-
over provides language-specific lexica of irregular verbs. For instance, the English li-
brary has a constant

know_V : V

There is also a functions for making a verb (V) into a transitive two-place verb (V2),
mkV2 : V -> V2

Now we can define
lin Know x y = mkCl x (mkV2 know_V) y

This rule produces all the variation that can occur in a clause. Some of the variations
are due to agreement to the subject:

Know I She —--> I know her
Know He She —-—-> he knows her

but much more is needed when the clause is put into a wider context, such as negation,
questions, and tenses:

mkS negative_Pol (Know I She) —-—> I don’t know her

mkQS (Know I She) -—> do I know her

mkS past_Tense (Know I She) --> I knew her

mkS fut_Tense anter_Ant (Know I She) --> I will have known her

In all these examples, we have just wrapped the clause Know I She with resource
grammar functions to produce the correct linearizations.
The same API works for German and French, by just changing the verb:

lin Know x y = mkCl x (mkV2 kennen_V) y
mkCl x (mkV2 connaitre_V) vy

lin Know x y
In addition to the variations listed above, German displays word order variations:

mkS if_Subj (mkS (Know She I)) (mkS (Know I She)) —-—>
wenn sie mich kennt, kenne ich sie

(“if she knows me I know her”). In French, clitic variations are produced:

Know I Marie —--> je connais Marie
Know Marie I —--> Marie me connait

In none of these cases does the user of the library need to know about word order, clitics,
inflection, or agreement—she just has to decide what the verb is, select the subject and
the object, and perhaps the tense or some other context where the clause is to be used.

A futher effectivization of grammar writing is provided by the use of functors. A
functor, or a parametrized module, is a program module that depends on some undefined
constants and can be instantiated by defining these constants. The previous example
suggests a functor definition of the predicate know:

lin Know x y = mkCl x know_V2 y

where know_V?2 is an undefined constant. Each of the three languages define it sepa-
rately:

know_V2 = mkV2 know_V
know_V2 mkV2 kennen_V
know_V2 mkV2 connalitre V

Technically, also mkC1 is an undefined constant. Its definition for each language is
given in the GF Resource Grammar Library. In general, functors use two kinds of con-
stants:

— syntactic constants defined in the library
— lexical constants defined by the programmer

This way of using functors has become standard in GF projects. Grammarians that use
the library thus have to write three kinds of modules:

— abstract syntax, to define the semantics of a new domain
— concrete syntax functor, to implement the first language on a new domain
— domain lexicon, to implement a new language in an old domain

The first two tasks demand domain expertise and knowledge about GF and the Resource
Grammar Library, but no detailed linguistic knowledge. The third task demands little
more than a native speaker’s knowledge of the target language and the terminology of
the domain.

The Resource Grammar Library thus minimizes the knowledge requirements for
building translation systems: the programmer gives the words, and the grammar govern-
ing the words comes from the library. This technique is similar to how human speakers
of a foreign language learn new words. If I know the grammar of German, but I don’t
know how to express a concept such as x infersects y in geometry, I can ask someone
how to translate this very example. Then I can use my knowledge of German grammar
to generalize the translation to more complex cases such as wenn x nicht y schnitte,
wiirde y auch nicht x schneiden (“if x didn’t intersect y, y wouldn’t intersect x either”).

The translation of the sentence x intersects y as x schneidet y can actually be inter-
preted as the linearization rule

lin Intersect x y = mkCl x (mkV2 schneiden_ V) vy
if the sentence x schneidet y can be parsed in the German resource grammar as a tree of
type Cl. This suggests a method for example-based grammar writing, where the library
is not used explicitly but via examples, which in this case could be given in a format

such as

lin Intersect x y = parse Cl "x schneidet y"

The crucial piece of information is here the German string. One way to obtain this
string is by giving the English string to a human translator, who thus doesn’t need any
knowledge of GF; she may need to know that the context is that of geometry, to resolve
potential word sense ambiguities.

By example-based grammar writing, building a translation system that can deal with
an unlimited number of documents boils down to translating just one document, which
contains representative examples of all concepts in the domain. This is probably one of
the most efficient ways to use human labour in machine translation.

An extreme form of example-based grammar writing is to give the translation exam-
ples to a statistical machine translator system, such as Google translate. In fact, prop-
erly trained statistical translators are quite reliable with sentences that are short and
typical (i.e. frequent n-grams for a small). Thus, for instance, Google translate gets
x intersects y right in German. Since the produced GF rule covers all variation due to
agreement, tense, and word order, it expands to 288 context-free rules. Most of these
derived combinations are not translated correctly in Google translate—but this doesn’t
matter, since we now have a grammar-based system. In analogy to what we concluded
about human labour, providing translations for example-based grammar writing might
be one of the most reliable ways of using statistical models in machine translation.

8 Transfer and Paraphrasing

We have presented GF as a framework for interlingua-based translation systems. The
need of transfer functions (i.e. functions mapping source language trees to target lan-
guage trees) is less common than in some other grammar formalisms, because the ab-
stract syntax trees of GF can maintain a considerable distance to the concrete trees.

In traditional systems, transfer is used whenever there is a structural change be-
tween the source and the target language. A typical example is my name is Bond. In the
English sentence, the subject is my name. In the German equivalent, ich heifle Bond,
the subject is ich (“I”), and a special verb heiffen (“have name”) is used. The French
translation is je m’appelle Bond, literally “I call myself Bond”.

In GF, translation is performed via the abstract syntax of a semantic grammar, rather
than the syntactic resource grammar. If the abstract syntax has a predicate

fun Named : Person —-> Name —-> Fact
it is not a problem to pick different syntactic structures as linearizations,

fun Named x y = mkCl (possessive x (mkN "name")) (mkNP vy)
fun Named x y = mkCl x (mkV2 heiBen_V) (mkNP vy)
fun Named x vy = mkCl x (mkV2 (reflV appeler_V)) (mkNP vy)

(Notice that GF provides overloading for sets of functions that have different types,
here mkC1.) Thus in the run-time translation, no transfer is needed—just parsing and
linearization via the interlingua tree. The use of different syntactic structures (as defined
by the resource grammar) in linearization rules has the effect of compile-time transfer.

It eliminates the need of run-time transfer and hence maintains the simple interlingua-
based translation model of GF.

The only restriction that GF’s interlingua model poses to translation is composition-
ality. More precisely, all linearization rules in GF are compositional, which means that
the linearization of every tree must be defined as a function of the linearizations of its
immediate subtrees (and not of the trees themselves). Using the notation of #* for the
linearization of a tree ¢ and f* for the linearization function of a function f, composi-
tionality means that

(fty...ty)" = f &7 ...t

If linearizations were just strings (as in context-free grammars), it would be impossible
to maintain compositionality even in simple translation tasks. But the use of records
and tables in GF makes it maintainable in most cases, and it requires some effort to find
counterexamples.

One counterexample to compositinal translation is suggested by the my name is
example above. In German, the predicate has the bearer of the name as its subject, and
the subject can be shared by verb phrase coordination:

ich heifie Bond und komme aus England
(“T have-name Bond and come from England”). The English translation is
my name is Bond and I come from England

But this translation has changed the original’s conjunction of predicates (verb phrases)
to a conjunction of sentences, because there is no common subject that could be shared.
On the abstract syntax tree level, it involves a transfer from a tree of the form

PredVP a (ConjVP F G)
to a tree of the form
ConjS (PredVP a F) (PredVP x G)

Also run-time transfer functions can be defined in GF. They are executed on the
abstract syntax level between the source text parser and the target text generator. In
general, translation from L; to Lo is then a composition of three operations,

parse Ly — transfer L; Ly — linearize Lo

Interlingual translation is a limiting case, where transfer is the identity mapping. Notice
that the role here assigned to transfer is very similar to the operations that optimizing
compilers such as GCC perform on the intermediate tree language level.

Transfer involves a departure from the interlingual model, destroys reversibility, and
may compromise run-time efficiency. Therefore translators written in GF have usually
avoided it. However, it can be useful to look at some of the fundamental properties
suggested by type theory.

Like many logical frameworks, the abstract syntax part of GF can define a notion of
definitional equality among syntax trees. For instance, the correspondence between sen-
tence and verb phrase conjunction can be seen as a definitional equality. A reasonable

condition for transfer functions is that they must preserve definitional equality. Defini-
tional equality is generated by arbitrary recursive function definitions, which need not
be compositional.

The linguistic counterpart of definitional equality is paraphrasing. Two concrete
syntax expressions are paraphrases, if their syntax trees are definitionally equal. We
could say that the literal translation of a string is the one obtained by parsing the string
and linearizing the resulting tree ¢. If the tree is first converted to a definitionally equal
tree t’, we obtain a translation by paraphrase.

In general, there can be infinitely many trees definitionally equal to a given tree.
These trees can be generated by applying equality rules forwards and backwards. To
take the most familiar example from type theory, assume the set of natural numbers
defined by the constructors

data Zero : Nat
data Succ : Nat -> Nat

(the keyword data in GF marks a function as a constructor). Then add the constant 1
and the addition operation, with their definitions, written as follows in GF:

fun one : Nat
def one = Succ Zero

fun plus : Nat -> Nat -> Nat
def plus x Zero = x
def plus x (Succ y) = Succ (plus x V)

The tree one now has infinitely many paraphrases, beginning with those obtained in
one computation step forward or backward,

Succ Zero, plus one Zero, plus (Succ Zero) Zero,

The computation distance of a tree t’ from a tree ¢ is the number of steps needed to
obtain ¢’ from 7. A possible condition for translation by transfer is that it should min-
imize the computation distance. (An alternative measure would be tree edit distance,
but computation distance has the advantage that the optimal sorting of trees can be
straightforwardly generated from the definitions.)

Now, the minimal computation distance is 0, and this cannot always be achieved
because there are other constraints. One such constraint is the concrete syntax of a
target language can simply lack the construct used in the source language. Another
constraint, reasonable in domains that require precision, is non-ambiguity: if a string
is unambiguous in the source language, its translation should not be ambiguous in the
target language. This condition is decidable relative to a fixed grammar, because the GF
parser can find all trees corresponding to a string (except in some pathological cases
where the number of trees is infinite).

The transfer task can therefore be defined as finding the closest unambiguous para-
phrase. A typical example is anaphora. For instance, Finnish has a gender-neutral pro-
noun, hdn, corresponding to both ke and she. Therefore a love story written in English
often has to paraphrase he with mies (“the man”) and she with nainen (“the woman”).

The optimal translation is more subtle than this: consider a context in which a man and
a woman are given, and the sentence

She took his hand.
There are two equally close unambiguous translation of the second sentence,

Hiin tarttui miehen kéiteen. (“She took the man’s hand.”)
Nainen tarttui hinen kéiteensd. (“The woman took his hand.”)

One does not need to paraphrase both pronouns to remove ambiguity, because the other
pronoun can only refer to a different person. If it was the same person, the object posi-
tion would be rendered as a reflexive.

Yet another ingredient in transfer is style. Some constructs used in a source language
can be unnatural in the target language, even if they would be possible and unambigu-
ous. For instance, passive constructions with agents are common in English, but are
preferably translated by active constructions in Finnish. One way to implement this in
GF is to assign weights to abstract syntax functions, reflecting their goodness in each
target language. The weight of a tree is then the product of the weights of the functions
in all of its nodes. Transfer should then find the paraphrase that has the maximal weight
in the target language, at the same time as minimizing the computation distance to the
literal translation and maintaining non-ambiguity.

One way in which weights can be assigned to abstract syntax functions are via their
relative frequencies in some corpus. This leads to the notion of probabilistic GF gram-
mars and shows yet another way in which statistical language models can be combined
with grammars.

9 Specification and Evaluation with Grammars

Translation from one language to another is a function ultimately defined on the level
of strings: input a string in the source language, output a string in the target language.
But the type String -> String is of course too lean as a specification of what
translation should do, and must be refined. The standard refinement in the statistical
translation community is the BLEU score (Papineni 2002), which compares the output
of a translating system with some gold standard translation produced by a human. The
BLEU score is computed by counting the occurrences of words and n-grams, taking into
account their order. The best translation is one that matches the gold standard word by
word. But also some intuitively bad translations, such as one that matches the original
word by word but forgets a negation word, get high scores. And intuitively excellent
translations by humans get bad scores, if they don’t use the same words as the gold
standard.

The problems with the BLEU score are widely acknowledged, but it is still popular
because it is automatic. Since the goal of statistical translation systems is often defined
as the maximization of the BLEU score, one of its main uses is in the development phase
of the systems. A typical system uses several features to compute the most likely trans-
lation: frequencies from bilingual word alignment, frequencies of n-grams in the source
language, etc. Each of these features is given some weight, and the system is tested with

several distributions of weights to maximize the BLEU score. While this makes sense,
using the BLEU score as a measure of the quality when comparing translation systems
is less adequate.

So what alternatives are there for specifying what a translation function should do?
The traditional answer is, of course, that the translation should preserve meaning. An
implicit presupposition is that it should render grammatically correct output; otherwise
it would not count as a target-language expression at all! Fluency and good style (or
style that matches the style of the source) are further requirements. For most of these
criteria, there is no other evaluation method than human judgement. However, the GF-
based method described in this paper suggests a technique for cross-evaluating other
systems (such as statistical ones). Assuming that grammaticality is properly defined
in GF, GF grammars can be used for assessing the grammaticality of the output from
these other systems. The same concerns the preservation of meaning, if we have a GF
grammar in which the linearizations and definitional equalities preserve meaning.

A problem in using GF to evaluate statistical translation systems is of course that
the coverage of GF is just partial. But it can still be used to test the quality of a statistical
translator for those sentences that the GF grammar does cover. The relevant function-
ality of GF is multilingual generation: one can produce a synthesized corpus, that is, a
set of sentence pairs in a source and a target language, where the sentences in each pair
have the same abstract syntax tree. This set can then be used for evaluating a statistical
translator, because it gives both the source and the gold standard translations.

Multilingual generation also provides a way to build a statistical translator in the
first place. A GF grammar can be used for producing any number of aligned sentences,
which can be guaranteed to cover all word forms appearing in the grammar. All sen-
tence pairs can be automatically equipped by correct phrase alignments, which is a good
starting point for building the statistical model (Och and Ney 2004). Such an alignment
relates to each other the words that have the same smallest spanning subtree in the ab-
stract syntax. The alignments can cross, and they can include many-to-many relations,
as shown in the figure in Section 1, generated from the GF Resource Grammar Library.

The resulting statistical model may perform reasonably for the input covered by
the grammar, although never better than the grammar itself. However, the advantage of
the statistical model is that it is also able to translate sentences not recognized by the
grammar. In this way, the statistical model can be used as a smoothing technique for
grammar-based translation. Of course, it is then important to mark clearly which parts
of the output are translated by smoothing and which parts come from the grammar. This
technique is analogous to the use of GF-generated language models for speech recog-
nition studied by Jonson (2006). The result is a hybrid system where a statistical model
is derived from a grammar, and the grammar can in turn have been built as a general-
ization of a less refined statistical model as described in Section 7. An experiment with
this idea can be found in Bouillon and Rayner (2011).

10 Conclusion

Machine translation was attempted as one of the first applications of digital computers.
It was soon realized that fully automatic high-quality translation is impossible. The

main conclusion drawn from this was that there is a trade-off between coverage and
precision. The efforts on machine translation are thus roughly divided into open-domain
systems aiming at coverage and closed-domain systems aiming at precision. In both
kinds of systems, human interaction can be involved. In open-domain systems, a typical
form of interaction is the post-processing of the output to improve its quality. In closed-
domain systems, a typical form of interaction is to ask a human to disambiguate. One
can also use human interaction to recover from input that is not in the grammar, for
instance, to add the translations of unknown words.

The use of type theory in machine translation dates back to the earliest years, when
Bar-Hillel applied it to the formal representation of grammar and meaning. GF is a con-
temporary variant of the idea, providing a notion of multilingual grammars, a frame-
work for applying the method to new domains, a resource grammar library for improv-
ing the productivity for new languages, and a set of user interface components (parsing,
syntax editing) to help the work of translators.

GF has since 1998 been used for translation on several domains, including mathe-
matics (Hallgren and Ranta 2000, Caprotti 2006), software specifications (Johannisson
2005), and spoken dialogue systems (Bringert & al. 2005, Perera and Ranta 2007).
The European MOLTO project (Multilingual On-Line Translation) aims to scale up the
methods into larger domains, more languages, easier production and application, and
more robustness (i.e. recovery from out-of-the grammar input).

Some of the GF methods presented in this paper have not yet been used in actual
translation systems. On the purely type-theoretical side, these include the anaphora res-
olution algorithm (Section 4) and the generation of paraphrases via definitional equality
(Section 8). On the hybrid side, the ranking of paraphrases (Section 8) and the train-
ing of statistical translations (Section 9) have just had their first experiments in the
MOLTO project. On the other hand, example-based grammar writing (Section 7) and
disambiguation grammars (Section 5) are recent ideas both of which have given promis-
ing results in the first demonstrator of MOLTO, which is a phrasebook for translating
touristic phrases between 14 languages (Angelov & al. 2010).

The first experiences with the Phrasebook and with a translator of mathematical
exercises are confirming the basic tenet of MOLTO: that it is possible to build reliable
translation systems for limited domains by careful engineering and adequate tools. With
almost any language pair and example covered by the grammar, the translation quality
is better than the quality produced by general-purpose statistical systems. In fact, it can
be better in a crucial way, since grammar-based translation can be guaranteed to be
correct by design whereas statistical systems always involve an element of uncertainty.

On the other hand, if we want a system that automatically translates any input,
uncertainty cannot be avoided, and statistical methods are the ones that de facto yield
the best quality in most cases. An interesting exception is translation between closely
related languages, such as Swedish and Danish (Tyers and Nordfalk 2009). The lack of
bilingual training data can make it impossible to build good statistical systems; at the
same time, simple rules (such as replacing words by their equivalents in proper forms)
may be sufficient to produce very good quality.

Acknowledgements

Per Martin-Lof supervised my PhD thesis and taught me how to think about type the-
ory and language. He also introduced me to the noisy channel model of Shannon. He
wondered if statistical models were still considered useful in natural language process-
ing, and they have ever since been a recurrent theme in our discussions. With his unique
combination of insights in both statistics and logic, and his accurate knowledge of many
languages, Per has continued to be a major resource for my work through the 21 years
that have passed since my PhD. When I later started to look closer at statistical methods,
I received inspiration and guidance from Joakim Nivre, Lluis Marquez, and Cristina Es-
paiia. Lauri Carlson has helped me to understand the problems of translation in general.
The model described in this paper has received substantial contributions from my own
PhD students Peter Ljunglof, Kristofer Johannisson, Janna Khegai, Markus Forsberg,
Bjorn Bringert, Krasimir Angelov, and Ramona Enache. The insightful comments from
an anonymous referee were valuable when preparing the final version of the paper.
The research leading to these results has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement n:o FP7-ICT-
247914 (http://www.molto-project.eu).

http://www.molto-project.eu

Bibliography

Ajdukiewicz, K. (1935). Die syntaktische konnexitit. Studia Philosophica 1, 1-27.

Alshawi, H. (1992). The Core Language Engine. Cambridge, Ma: MIT Press.

Angelov, K. (2009). Incremental Parsing with Parallel Multiple Context-Free Gram-
mars. In Proceedings of EACL’09, Athens.

Angelov, K., O. Caprotti, R. Enache, T. Hallgren, I. Listenmaa, A. Ranta, J. Saludes,
and A. Slaski (2010, 06/2010). D10.2 molto web service, first version. (D10.2).
Angelov, K. and R. Enache (2010). Typeful Ontologies with Direct Multilingual Verbal-

ization. In N. Fuchs and M. Rosner (Eds.), CNL 2010, Controlled Natural Language.

Appel, A. (1998). Modern Compiler Implementation in ML. Cambridge University
Press.

Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description. Lan-
guage 29, 27-58.

Bar-Hillel, Y. (1964). Language and Information. Reading, MA: Addison-Wesley.

Bringert, B., R. Cooper, P. Ljunglof, and A. Ranta (2005, June). Multimodal dialogue
system grammars. In Proceedings of DIALOR’05, Ninth Workshop on the Semantics
and Pragmatics of Dialogue, pp. 53-60.

Brown, P. E,, J. Cocke, S. A. D. Pietra, V. J. D. Pietra, F. Jelinek, J. D. Lafferty, R. L.
Mercer, and P. S. Roossin (1990). A statistical approach to machine translation.
Computational Linguistics 16(2), 76-85.

Burke, D. A. and K. Johannisson (2005). Translating Formal Software Specifications
to Natural Language / A Grammar-Based Approach. In P. Blache and E. Stabler
and J. Busquets and R. Moot (Ed.), Logical Aspects of Computational Linguistics
(LACL 2005), Volume 3492 of LNCS/LNAI, pp. 51-66. Springer. http://www.
springerlink.com/content/?k=LNCS+3492.

Caprotti, O. (2006). WebALT! Deliver Mathematics Everywhere. In Proceedings of
SITE 2006. Orlando March 20-24. http://webalt.math.helsinki.fi/
content/el6/e301/e512/PosterDemoWebALT_eng.pdf.

Chandioux, J. (1976). METEO: un systéme opérationnel pour la traduction automatique
des bulletins météreologiques destinés au grand public. META 21, 127-133.

Curry, H. B. (1961). Some logical aspects of grammatical structure. In R. Jakob-
son (Ed.), Structure of Language and its Mathematical Aspects: Proceedings of the
Twelfth Symposium in Applied Mathematics, pp. 56—68. American Mathematical So-
ciety.

Donzeau-Gouge, V., G. Huet, G. Kahn, B. Lang, and J. J. Levy (1975). A structure-
oriented program editor: a first step towards computer assisted programming. In
International Computing Symposium (ICS’75).

Dowek, G., A. Felty, H. Herbelin, G. Huet, C. Parent, C. Paulin Mohring, B. Werner,
and C. Murthy (1993). The Coq proof assistant user’s guide : version 5.8. Research
Report RT-0154, INRIA.

Dymetman, M., V. Lux, and A. Ranta (2000). XML and multilingual document author-
ing: Convergent trends. In Proc. Computational Linguistics COLING, Saarbriicken,
Germany, pp. 243-249. International Committee on Computational Linguistics.

http://www.springerlink.com/content/?k=LNCS+3492
http://www.springerlink.com/content/?k=LNCS+3492
http://webalt.math.helsinki.fi/content/e16/e301/e512/PosterDemoWebALT_eng.pdf
http://webalt.math.helsinki.fi/content/e16/e301/e512/PosterDemoWebALT_eng.pdf

Hallgren, T. and A. Ranta (2000). An Extensible Proof Text Editor. In M. Parigot and
A. Voronkov (Eds.), LPAR-2000, Volume 1955 of LNCS/LNAI, pp. 70-84. Springer.
http://www.cse.chalmers.se/~aarne/articles/1lpar2000.pdf.

Harper, R., F. Honsell, and G. Plotkin (1993). A Framework for Defining Logics.
JACM 40(1), 143-184.

Hutchins, W. J. and H. L. Somers (1992). An Introduction to Machine Translation.
London: Academic Press Limited.

Jelinek, F. (2009). The dawn of statistical ASR and MT. Computational Linguis-
tics 35(4), 483-494.

Johannisson, K. (2005). Formal and Informal Software Specifications. Ph. D. thesis,
Dept. of Computing Science, Chalmers University of Technology and Gothenburg
University.

Jonson, R. (2006). Generating statistical language models from interpretation grammars
in dialogue system. In Proceedings of EACLO6, Trento, Italy.

Kay, M. (1997). The Proper Place of Men and Machines in Language Translation.
Machine Translation 12(1-2), 3-23.

Khegai, J., B. Nordstrom, and A. Ranta (2003). Multilingual Syntax Editing in
GF. In A. Gelbukh (Ed.), Intelligent Text Processing and Computational Lin-
guistics (CICLing-2003), Mexico City, February 2003, Volume 2588 of LNCS,
pp. 453-464. Springer-Verlag. http://www.cs.chalmers.se/~aarne/
articles/mexico.ps.gz.

Knuth, D. (1968). Semantics of context-free languages. Mathematical Systems The-
ory 2, 127-145.

Koehn, P. and H. Hoang (2007). Factored translation models. In EMNLP-CoNLL, pp.
868-876. ACL.

Ljunglof, P. (2004). The Expressivity and Complexity of Grammatical Framework.
Ph. D. thesis, Dept. of Computing Science, Chalmers University of Technology
and Gothenburg University. http://www.cs.chalmers.se/~peb/pubs/
p04-PhD-thesis.pdf.

Ljunglof, P., G. Amores, R. Cooper, D. Hjelm, O. Lemon, P. Manchén, G. Pérez,
and A. Ranta (2006). Multimodal Grammar Library. TALK. Talk and Look:
Tools for Ambient Linguistic Knowledge. IST-507802. Deliverable 1.2b.
http://www.talk-project.org/fileadmin/talk/publications_
public/deliverables_public/TK_D1-2-2.pdf.

Lopez, A. (2008). Statistical machine translation. ACM Comput. Surv. 40(3).

Luo, Z. and P. Callaghan (1999). Mathematical vernacular and conceptual well-
formedness in mathematical language. In A. Lecomte, F. Lamarche, and G. Per-
rier (Eds.), Logical Aspects of Computational Linguistics (LACL), Volume 1582 of
LNCS/LNAI pp. 231-250.

Luo, Z. and R. Pollack (1992). LEGO Proof Development System. Technical report,
University of Edinburgh.

Magnusson, L. (1994). The Implementation of ALF - a Proof Editor based on Martin-
Lof’s Monomorphic Type Theory with Explicit Substitution. Ph. D. thesis, Depart-
ment of Computing Science, Chalmers University of Technology and University of
Goteborg.

Martin-Lof, P. (1984). Intuitionistic Type Theory. Napoli: Bibliopolis.

http://www.cse.chalmers.se/~aarne/articles/lpar2000.pdf
http://www.cs.chalmers.se/~aarne/articles/mexico.ps.gz
http://www.cs.chalmers.se/~aarne/articles/mexico.ps.gz
http://www.cs.chalmers.se/~peb/pubs/p04-PhD-thesis.pdf
http://www.cs.chalmers.se/~peb/pubs/p04-PhD-thesis.pdf
http://www.talk-project.org/fileadmin/talk/publications_public/deliverables_public/TK_D1-2-2.pdf
http://www.talk-project.org/fileadmin/talk/publications_public/deliverables_public/TK_D1-2-2.pdf

Montague, R. (1974). Formal Philosophy. New Haven: Yale University Press. Collected
papers edited by Richmond Thomason.

Nordstrom, B., K. Petersson, and J. Smith (1990). Programming in Martin-Lof’s Type
Theory. An Introduction. Oxford: Clarendon Press.

Norell, U. (2007, September). Towards a practical programming language based on
dependent type theory. Ph. D. thesis, Department of Computer Science and Engi-
neering, Chalmers University of Technology, SE-412 96 Géteborg, Sweden.

Och, F. J. and H. Ney (2004). The alignment template approach to statistical machine
translation. Computational Linguistics 30(4), 417-449.

Papineni, K., S. Roukos, T. Ward, and W.-J. Zhu (2002). BLEU: a method for automatic
evaluation of machine translation. In ACL, pp. 311-318.

Perera, N. and A. Ranta (2007). Dialogue System Localization with the GF Resource
Grammar Library. In SPEECHGRAM 2007: ACL Workshop on Grammar-Based
Approaches to Spoken Language Processing, June 29, 2007, Prague. http://
www.cs.chalmers.se/~aarne/articles/perera-ranta.pdf.

Pierce, J. R., J. B. Carroll, and al. (1966). Language and Machines — Computers in
Translation and Linguistics. ALPAC report.

Power, R. and D. Scott (1998). Multilingual authoring using feedback texts. In
COLING-ACL 98, Montreal, Canada.

Ranta, A. (1994). Type Theoretical Grammar. Oxford University Press.

Ranta, A. (2004). Grammatical Framework: A Type-Theoretical Grammar Formal-
ism. The Journal of Functional Programming 14(2), 145-189. http://www.
cse.chalmers.se/~aarne/articles/gf-jfp.pdf.

Ranta, A. (2007). Modular Grammar Engineering in GF. Research on Language
and Computation 5, 133-158. http://www.cs.chalmers.se/~aarne/
articles/multieng3.pdf.

Ranta, A. (2009a). Grammars as Software Libraries. In Y. Bertot, G. Huet, J.-J.
Lévy, and G. Plotkin (Eds.), From Semantics to Computer Science. Essays in Honour
of Gilles Kahn, pp. 281-308. Cambridge University Press. http://www.cse.
chalmers.se/~aarne/articles/libraries-kahn.pdf.

Ranta, A. (2009b). The GF Resource Grammar Library. Linguistics in Language
Technology 2. http://elanguage.net/journals/index.php/lilt/
article/viewFile/214/158.

Ranta, A. (2011). Grammatical Framework: Programming with Multilingual Gram-
mars. Stanford: CSLI Publications. ISBN-10: 1-57586-626-9 (Paper), 1-57586-627-
7 (Cloth).

Rayner, M., P. Estrella, and P. Bouillon (2011). Bootstrapping a statistical speech
translator from a rule-based one. In Proceedings of the Second International Work-
shop on Free/Open-Source Rule-Based Machine Translation (2011: Barcelona).
http://hdl.handle.net/10609/5647.

Rosetta, M. T. (1994). Compositional Translation. Dordrecht: Kluwer.

Shannon, C. (1948). A Mathematical Theory of Communication. The Bell System
Technical Journal 1.

Stallman, R. (2001). Using and Porting the GNU Compiler Collection. Free Software
Foundation.

http://www.cs.chalmers.se/~aarne/articles/perera-ranta.pdf
http://www.cs.chalmers.se/~aarne/articles/perera-ranta.pdf
http://www.cse.chalmers.se/~aarne/articles/gf-jfp.pdf
http://www.cse.chalmers.se/~aarne/articles/gf-jfp.pdf
http://www.cs.chalmers.se/~aarne/articles/multieng3.pdf
http://www.cs.chalmers.se/~aarne/articles/multieng3.pdf
http://www.cse.chalmers.se/~aarne/articles/libraries-kahn.pdf
http://www.cse.chalmers.se/~aarne/articles/libraries-kahn.pdf
http://elanguage.net/journals/index.php/lilt/article/viewFile/214/158
http://elanguage.net/journals/index.php/lilt/article/viewFile/214/158
http://hdl.handle.net/10609/5647

Teitelbaum, T. and T. Reps (1981). The Cornell Program Synthesizer: a syntax-directed
programming environment. Commun. ACM 24(9), 563-573.

Tyers, F. and J. Nordfalk (2009). Shallow-transfer rule-based machine translation
for Swedish to Danish. In Proceedings of the First International Workshop on
Free/Open-Source Rule-Based Machine Translation (2009: Alicante). http://
hdl.handle.net/10045/12024.

Welsh, J., B. Broom, and D. Kiong (1991). A design rationale for a language-based
editor. Software: Practice and Experience 21, 923—-948.

http://hdl.handle.net/10045/12024
http://hdl.handle.net/10045/12024

	Machine Translation and Type Theory
	Aarne Ranta

