
GF Eclipse Plugin
MOLTO 4th Project Meeting, Zurich

John J. Camilleri

University of Gothenburg

john.j.camilleri@chalmers.se

7 March 2012

The research leading to these results has received funding from the European Union’s Seventh Framework

Programme (FP7/2007-2013) under grant agreement no. FP7-ICT-247914.

1 / 14



Motivation

How do we write GF grammars?

Text editor + console

• Editor modes for Emacs, Gedit, Geany

• Syntax highlighting, rudimentary auto-completion

but...

• Not tailored for GF

2 / 14



Motivation

Web IDE

• Great for jumping right in

• No installation/compilation, always up-to-date

• Storage in the cloud

• Controlled environment

but...

• Limited module inheritance

• Impractical for large projects

3 / 14



The Plugin

The GF Eclipse Plugin (GFEP)

• Work Package 2:
Grammar Developer’s Tools

• Version 1.4.0 (yesterday!)

• Uses Xtext framework

• September 2011 – present

4 / 14



Motivation

Why Eclipse?

• Leverage existing IDE features

• Syntax errors & semantic warnings

• Inline documentation

• Context-sensitive suggestions

• Wizards, code snippets

• Code completion, formatting

• Navigate external libraries

• Run code and test suites directly from IDE

5 / 14



The Plugin

Approach

• Layered on top of GF, not replacing it

• Requires GF already installed on system

• Eclipse project concept
• Regular GF files + some metadata files

• Eclipse builder concept
• Compiles your code as you write it

Target audience

• All levels of GF development

• People who like IDEs

6 / 14



Getting started

Requirements

• GF ≥ 3.3.3

• Eclipse ≥ 3.6

Installation

• Use Eclipse update site URL:
http://www.grammaticalframework.org/eclipse/release/

• Open GF perspective

7 / 14

http://www.grammaticalframework.org/eclipse/release/


Grammar-writing
Editing code

Example

Foods grammar

1 Open/edit some existing files

2 Syntax errors, other warnings

3 Auto-complete

4 Outline view

8 / 14



Grammar-writing
Inter-module references

Example

• Automatic building

• Unresolved names

• Jump to definition

• External libraries

9 / 14



Grammar-writing
Development-test cycle

Treebank testing

1 Create a treebank

2 Compile grammar and linearize trees

3 Manually correct and save as Gold Standard

4 For each change, repeat (2) and compare against (3)

We can now do this directly in the plugin!
Naming convention:

• abc.trees

• abc.trees.out

• abc.trees.gold

10 / 14



Grammar-writing
Add new language

Example

Let’s add a new language

1 Clone from English to Dutch

2 Change some strings

3 Create gold standard

4 Test against it, iterate

11 / 14



Status
What GFEP can and can’t do

GFEP does:

• leverage useful IDE features

• give you errors and warnings as you type

• help you navigate local and external cross-references

• ease the development-test cycle

GFEP doesn’t:

• type-check its suggestions

• write your grammars for you

• expose any models, bindings or APIs

12 / 14



Status
What GFEP can and can’t do

GFEP does:

• leverage useful IDE features

• give you errors and warnings as you type

• help you navigate local and external cross-references

• ease the development-test cycle

GFEP doesn’t:

• type-check its suggestions

• write your grammars for you

• expose any models, bindings or APIs

13 / 14



Back matter

We need feedback!
Please report bugs and request features.

Links

Web www.grammaticalframework.org/eclipse

Source github.com/GrammaticalFramework/gf-eclipse-plugin

Bug tracker github.com/GrammaticalFramework/gf-eclipse-plugin/

issues

Email john.j.camilleri@chalmers.se

14 / 14

www.grammaticalframework.org/eclipse
github.com/GrammaticalFramework/gf-eclipse-plugin
github.com/GrammaticalFramework/gf-eclipse-plugin/issues
github.com/GrammaticalFramework/gf-eclipse-plugin/issues
john.j.camilleri@chalmers.se

