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Motivation

How do we write GF grammars?

Text editor + console

• Editor modes for Emacs, Gedit, Geany

• Syntax highlighting, rudimentary auto-completion

but...

• Not tailored for GF
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Motivation

Web IDE

• Great for jumping right in

• No installation/compilation, always up-to-date

• Storage in the cloud

• Controlled environment

but...

• Limited module inheritance

• Impractical for large projects
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The Plugin

The GF Eclipse Plugin (GFEP)

• Work Package 2:
Grammar Developer’s Tools

• Version 1.4.0 (yesterday!)

• Uses Xtext framework

• September 2011 – present
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Motivation

Why Eclipse?

• Leverage existing IDE features

• Syntax errors & semantic warnings

• Inline documentation

• Context-sensitive suggestions

• Wizards, code snippets

• Code completion, formatting

• Navigate external libraries

• Run code and test suites directly from IDE
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The Plugin

Approach

• Layered on top of GF, not replacing it

• Requires GF already installed on system

• Eclipse project concept
• Regular GF files + some metadata files

• Eclipse builder concept
• Compiles your code as you write it

Target audience

• All levels of GF development

• People who like IDEs
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Getting started

Requirements

• GF ≥ 3.3.3

• Eclipse ≥ 3.6

Installation

• Use Eclipse update site URL:
http://www.grammaticalframework.org/eclipse/release/

• Open GF perspective
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Grammar-writing
Editing code

Example

Foods grammar

1 Open/edit some existing files

2 Syntax errors, other warnings

3 Auto-complete

4 Outline view

8 / 14



Grammar-writing
Inter-module references

Example

• Automatic building

• Unresolved names

• Jump to definition

• External libraries
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Grammar-writing
Development-test cycle

Treebank testing

1 Create a treebank

2 Compile grammar and linearize trees

3 Manually correct and save as Gold Standard

4 For each change, repeat (2) and compare against (3)

We can now do this directly in the plugin!
Naming convention:

• abc.trees

• abc.trees.out

• abc.trees.gold
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Grammar-writing
Add new language

Example

Let’s add a new language

1 Clone from English to Dutch

2 Change some strings

3 Create gold standard

4 Test against it, iterate
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Status
What GFEP can and can’t do

GFEP does:

• leverage useful IDE features

• give you errors and warnings as you type

• help you navigate local and external cross-references

• ease the development-test cycle

GFEP doesn’t:

• type-check its suggestions

• write your grammars for you

• expose any models, bindings or APIs
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Back matter

We need feedback!
Please report bugs and request features.

Links

Web www.grammaticalframework.org/eclipse

Source github.com/GrammaticalFramework/gf-eclipse-plugin

Bug tracker github.com/GrammaticalFramework/gf-eclipse-plugin/

issues

Email john.j.camilleri@chalmers.se
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