MOLTO: Overview and Half-Way Results

Aarne Ranta

MOLTO Open Day, Helsinki, 2 September 2011

ABOUT

NEWS

EVENTS

MOLTO's mission is to develop a set of tools for translating texts between *multiple languages* in *real time* with *high quality*. MOLTO will use multilingual grammars based on semantic interlinguas.

FP7-ICT-247914, Strep, www.molto-project.eu

U Gothenburg, U Helsinki, UPC Barcelona, Ontotext (Sofia)

March 2010 - February 2013

EC Contribution 2,375,000 EUR

What's new?

Tool	Google, Babelfish	MOLTO
target	consumers	producers
input	unpredictable	predictable
coverage	unlimited	limited
quality	browsing	publishing

Producer's quality

Cannot afford translating French

• prix 99 euros

to Swedish

• pris 99 kronor

Typical SMT error due to parallel corpus containing localized texts. (N.B. 99 kronor = 11 euros)

Reliability

German to English

• er bringt mich um -> he is killing me

correct, but

• er bringt meinen besten Freund um -> he brings my best friend for

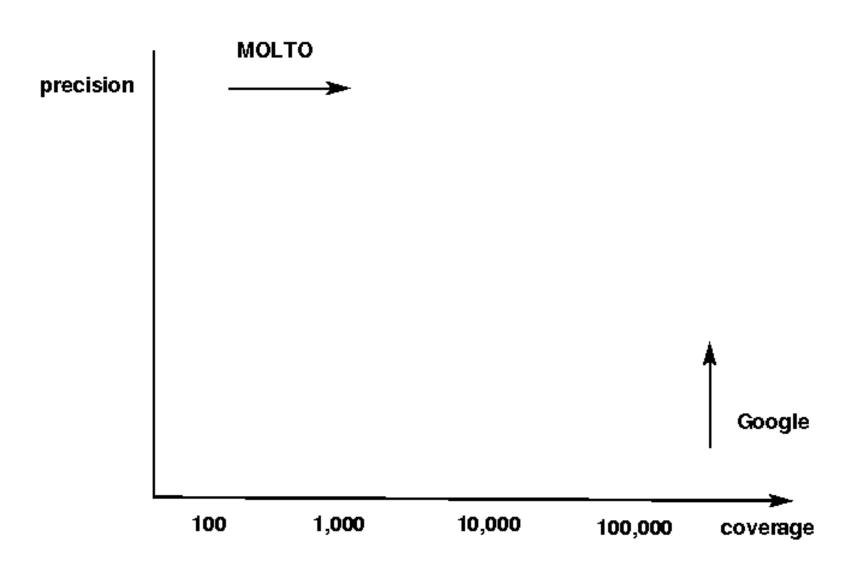
should be *he kills my best friend*. (Typical error due to **long distance dependencies**, causes **unpredictability**)

Linguistic knowledge

(From Google Translate 1 September 2011)

Finnish: yö, yön, yötä, yönä, yöksi, yössä, yöstä, yöhön, yöllä, yöltä, yölle, yöttä, öineen, öin, yöt, öitä, öiden, öinä, öiksi, öissä, öistä, öihin, öillä, öille, öittä, öin

English: Night, nights, yöttä, öineen, night, night, nights, nights, nights States by quotas, domestic insurance companies, nights, nights, öillä, against loss, States, öittä, night


Aspects of reliability

Separation of levels (syntax, semantics, pragmatics, localization)

Predictability (generalization for similar constructs, and over time)

Programmability: debugging and fixing bugs (vs. holism)

Trade-off: coverage vs. precision

The translation directions

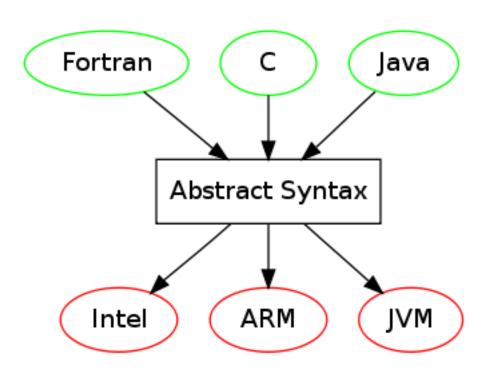
Statistical methods (e.g. Google translate) work decently to English

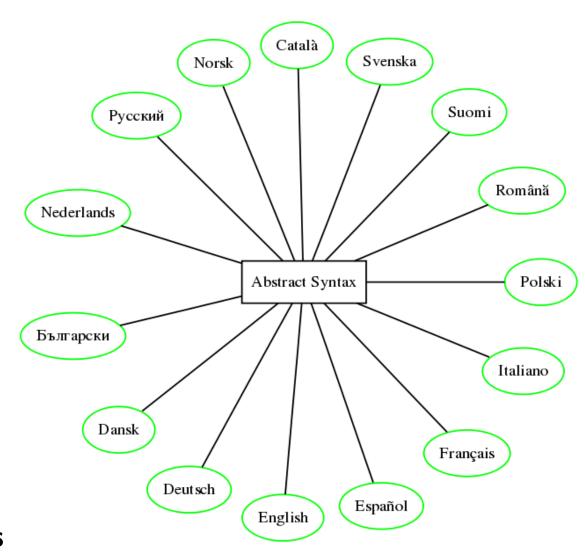
- rigid word order
- simple morphology
- originates in projects funded by U.S. defence

Grammar-based methods work equally well for different languages

- Finnish cases
- German word order

Main technologies


GF, grammaticalframework.org

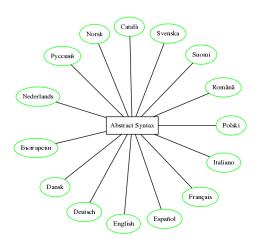

- "compiling natural languages"
- Domain-specific interlingua + concrete syntaxes
- GF Resource Grammar Library
- Incremental parsing
- Syntax editing

OWL Ontologies

Statistical Machine Translation

The GF model: multi-source multi-target compilers

MOLTO languages


The multilingual document

Master document: semantic representation (abstract syntax)

Updates: from any language that has a concrete syntax

Rendering: to all languages that have a concrete syntax

The technology is there - MOLTO will apply it and scale it up.

Domain-specific interlinguas

The abstract syntax must be formally specified, well-understood

- semantic model for translation
- fixed word senses
- proper idioms

For instance: a mathematical theory, an ontology - anything that is definable in **type theory**

Two things we do better than before

No universal interlingua:

• The Rosetta stone is not a monolith, but a boulder field.

Yes universal concrete syntax:

- no hand-crafted ad hoc grammars
- but a general-purpose Resource Grammar Library

Domains for case studies

Mathematical exercises (<- WebALT)

Patents in biomedical and pharmaceutical domain

Museum object descriptions

Demo: a tourist phrasebook (web and Android phones)

http://www.grammaticalframework.org/demos/phrasebook/

ANDROID MARKET > RESA OCH LOKALT > PHRASEDROID

Grammar example: the predicate "x likes y"

Abstract syntax:

```
fun Like : Person -> Item -> Fact
```

Concrete syntax (first approximation):

```
lin Like x y = x ++ "likes" ++ y -- Eng
lin Like x y = x ++ "tycker om" ++ y -- Swe
lin Like x y = y ++ "piace a" ++ x -- Ita
```

Complexity of concrete syntax

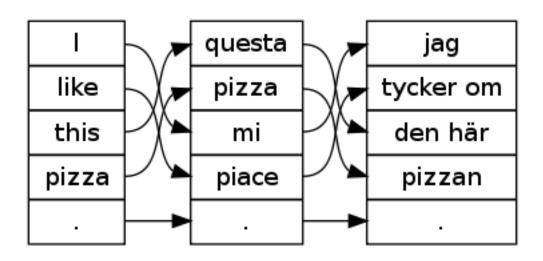
```
Italian: agreement, rection, clitics (il vino piace a Maria vs. il vino mi
piace ; tu mi piaci)

lin Like x y = y.s ! nominative ++ case x.isPron of {
   True => x.s ! dative ++ piacere_V ! y.agr ;
   False => piacere_V ! y.agr ++ "a" ++ x.s ! accusative
   }

oper piacere_V = verbForms "piaccio" "piaci" "piace" ...

Moreover: contractions (tu piaci ai bambini), tenses, mood, ...
```

The GF Resource Grammar Library


Currently for 16 languages; 3-6 months for a new language.

Complete morphology, comprehensive syntax, lexicon of irregular words.

Common syntax API:

```
lin Like x y = mkCl x (mkV2 (mkV "like")) y -- Eng
lin Like x y = mkCl x (mkV2 (mkV "tycker") "om") y -- Swe
lin Like x y = mkCl y (mkV2 piacere_V dative) x -- Ita
```

Word/phrase alignments via abstract syntax

Other potential uses

Wikipedia articles

E-commerce sites

Medical treatment recommendations

Social media

SMS

Contracts

Challenge: grammar tools

Scale up production of domain interpreters

- from 100's to 1000's of words
- from GF experts to domain experts and translators
- from months to days
- ullet writing a grammar pprox translating a set of examples

Example-based grammar writing

Abstract syntax Like She He English example she likes him German translation er gefällt ihr resource tree mkCl he_NP ge concrete syntax rule Like x y = mk

Like She He

she likes him

er gefällt ihr

mkCl he_NP gefallen_V2 she_NP

Like x y = mkCl y gefallen_V2 x

first grammarian first grammarian human translator GF parser variables renamed

Challenge: translator's tools

Transparent use:

- text input + prediction
- syntax editor for modification
- disambiguation
- on the fly extension
- normal workflows: plug-ins in standard translator tools, web, mobile phones...

Innovation: OWL interoperability

Transform web ontologies to interlinguas

Pages equipped with ontologies... may soon be equipped by translation systems

Natural language search and inference

Scientific challenge: robustness and statistics

- 1. Statistical Machine Translation (SMT) as fall-back
- 2. Hybrid systems
- 3. Learning of GF grammars by statistics
- 4. Improving SMT by grammars

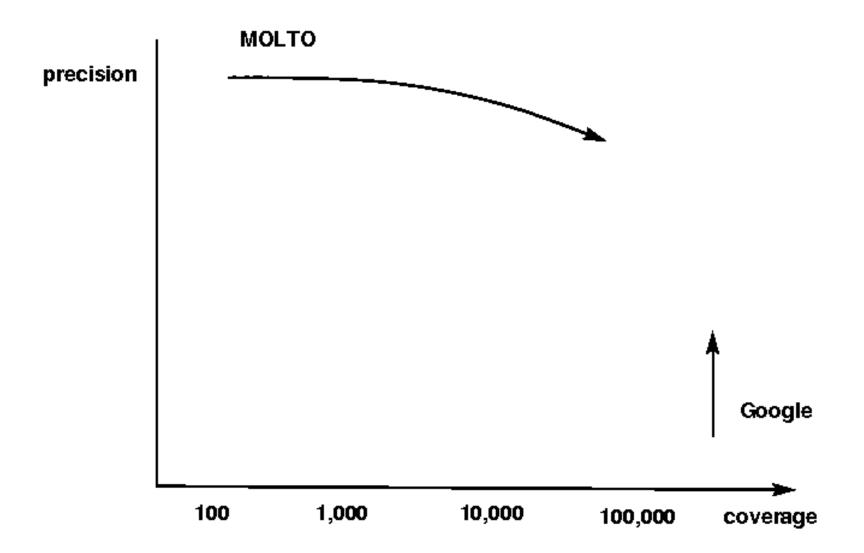
Learning GF grammars by statistics

Abstract syntax Like She He
English example she likes him
German translation er gefällt ihr
resource tree mkCl he_NP gefallen_V2 she_NP
concrete syntax rule Like x y = mkCl y gefallen_V2 x

first grammarian first grammarian SMT system GF parser variables renamed

Rationale: SMT is *good* for sentences that are *short* and *frequent*

Improving SMT by grammars


Rationale: SMT is bad for sentences that are long and involve word order variations

if you like me, I like you

If (Like You I) (Like I You)

wenn ich dir gefalle, gefällst du mir

A possible scenario: controlled trade-off precision/quality

Availability of MOLTO tools

Open source, LGPL (except parts of the patent case study)

Web demos

Mobile applications (Android)

Highlights of the latest six-month period

WP2: Grammar Development tools

- web-based grammar development environment
- resource grammar library: Nepalese, Persian, Punjabi

WP3: Translator's tools

- Term Factory
- C port of GF

WP4: Knowledge engineering

• GF-OWL interoperability

WP5: Statistical and robust parsing

- phrase alignments and probabilities in GF
- hybrid GF/SMT decoding

WP6: Mathematics case study

- OpenMath exercise grammar library in 12 language
- MathBar web application

WP7: Patents case study

- good domain-specific SMT system for biomedical patents
- improvements by grammar

WP8: Cultural heritage case study

- data collection and ontology
- grammar for rendering descriptions in English and Swedish

WP9: Evaluation

syntax and semantics based evaluation methods

WP10: Dissemination

- GF tutorial: CADE-2011
- publications
- GF Summer School 2011

Conclusion

You shouldn't expect

general-purpose translation ("Google competitor")

You should expect

- high quality multilingual translation
- portability to new domains (up to 1000's of words)
- productivity (days, weeks, months)
- ease of use (no training for authoring, a few days for grammarians)