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1 Introduction

This thesis is a feasibility study of multilingual lexicon management with the
help of ontologies. It is written as a part of MOLTO (Multilingual Online
Translation), a translation technology project funded by the European Union.
MOLTO provides a set of tools for creating small, domain-specific grammars
that can be used for machine translation or collaborative multilingual au-
thoring. MOLTO tools are targeted especially for content producers, such as
administrators of multilingual websites. The idea is that the users of MOLTO
tools can build a translation system for their needs, and the resulting system
will be highly specialised to the domain, providing quality at the expense of
coverage.

The tools are based on the interlingual paradigm of machine translation,
such that all languages in the system have a two-way mapping to a common,
language-independent representation of meaning; the technical details are de-
scribed later, in Chapters 3 and 4. In addition to the tools, MOLTO will
implement as case studies three complete translation systems, in the domains
of mathematical exercises, museum object descriptions and pharmaceutical
patents. This thesis will present concrete examples from the case studies to
illustrate the problems and the solutions we have encountered.

In translating free text, ambiguity is a problem when the system is analysing
the source text. In contrast, with domain-specific grammars, a more relevant
problem is encountered when filling the gaps in lexicon. Let us take an exam-
ple scenario. A user is writing a restaurant menu in English, which is being
automatically translated into other languages supported by the multilingual
grammar. The grammar has better support for some languages than others;
for example, it has a wide selection of fish names in English, but not necessarily
so in other languages.

Suppose that the user adds roasted bass to the menu, but there is no
translation for bass in Finnish. The user will want to modify the lexicon on
the fly, so that the translation process can continue. In the domain of the
grammar, bass is not ambiguous: the grammar is about items that are in the
restaurant menu, and it can only refer to a fish, not a low-voiced singer or an
instrument. However, if the grammar lacks the word for this concept in some
language, a user with no knowledge of Finnish would have to search for bass
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in an English-Finnish dictionary. Dictionaries often do not provide sufficient
context, and that is where the ambiguity problem arises.

Instead of dictionaries, we use ontologies as the source of the lexicon. An
ontology is a hierarchy of concepts, where the terms are grouped by meaning,
not just word forms. This helps to find terms that are related to the one that
is searched. Suppose the user wants to add at the same time all things labeled
as seafood; instead of searching just a word for bass and just in Finnish, she
could do a search that gives all things similar to bass and get their translations
in all languages the ontology covers.

The main purpose for ontologies in this thesis is using the concept struc-
ture as the source of lexicon, but we also touch the topic of using ontological
reasoning for the disambiguation of natural language. Chapter 2 introduces
the theoretical background, and Chapter 3 the tools and resources. Chap-
ter 4 describes the use cases: disambiguation, lexicon harvesting and ontology
verbalisation. Chapter 5 discusses related work, and Chapter 6 presents con-
clusions.

2 Theoretical background

This section covers the theoretical backround of this study: theories and meth-
ods related to machine translation and ontologies.

2.1 Machine translation

Machine translation is a branch of natural language processing (NLP). Its pur-
pose is to automate translation from one natural language to another, either
the whole process or parts of it (Arnold et al., 1993). It involves both natural
language understanding and natural language generation, which makes it one
of the hardest problems in computational linguistics. In the following sub-
sections we will go through a short history of machine translation, introduce
the machine translation paradigms and discuss the concept of ambiguity in
machine translation.
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2.1.1 History

This section presents a brief overview of the historical development of machine
translation. For a more thorough survey, see e.g. Hutchins (2006).

The history of machine translation dates from the advent of the modern
digital computer, that is, late 1940s to early 1950s. The problem was initially
considered cryptographic instead of linguistic; the early approach was basically
word-by-word direct translation by means of a bilingual dictionary and rules
to fix the word order in the target language. By 1960s, there had been no
significant breakthrough, and funding for machine translation was reduced in
favour of more basic research in computational linguistics.

In 1970s and 1980s, machine translation became more linguistically ambi-
tious. Basic research had created new methods for morphological and syntactic
analysis. The MT systems were mostly based on human-written rules, ranging
from mapping syntactic structures between two languages to trying to capture
a completely language-independent meaning—the latter proved infeasible on a
large scale, while the former produced some useful results. A famous example
from this era is METEO, a rule-based system for translating weather reports
between French and English (Slocum, 1984). However, the success stories of
rule-based methods were mostly restricted to a specific domain, with a limited
choice of vocabulary and a strict format.

By the 1990s, computational power had grown enough to enable new ap-
proaches, most importantly the statistical paradigm. Instead of human-written
rules, statistical methods are based on learning from data; the linguistic repre-
sentation does not depend on a priori categories, but empirical counts of what
is attested in the corpus. This era has brought general-purpose MT systems for
unrestricted text. Before the Internet was common, the main users of machine
translation were companies, with the objective to replace at least parts of the
work of professional translators. Although commercially developed machine
translation aimed for publishers still exists, a typical example of modern MT
is a system that is freely available for everyone and whose translation quality
is poor but usable, intended for providing a rough idea of a text.
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2.1.2 Machine translation paradigms

Some paradigms were mentioned briefly in the history of machine translation.
In this section we get a more detailed view of the interlingual paradigm that
is used in the MOLTO project, and for comparison, the statistical paradigm.

Interlingual machine translation An interlingua is a language-independent
representation of meaning. The term interlingua often implies the use of such
representation as an aid for translation, but its origin is in the ideas of 17th
century philosophers, such as Gottfried Leibniz, René Descartes and John
Wilkins, about a universal language that could express every human thought
as a composition of simple concepts. For a long time, the idea remained only a
philosophical one. Only in the 1970s, after more than two decades of machine
translation research, it was put into use as a machine translation paradigm.

Interlingual machine translation is one of the rule-based paradigms, along
with transfer and direct translation. What is common to all approaches is the
application of linguistic information; some kind of mapping between the source
and the target, in such a way that we know in each step the relation between
each item. The three approaches can be placed on a scale depending on the
level of intermediary representation from lowest to highest: direct translation,
transfer-based translation and interlingual translation.

The simplest rule-based system is one that processes the source text one
word at a time, (analyses each word morphologically,) searches the word in a
bilingual dictionary, (inflects it accordingly in the target language) and outputs
the translation. This requires a bilingual dictionary, either having all inflected
forms as atomic units, or in combination with morphological analysis of both
source and target languages. The intermediate representation is limited to
morphology, and context limited to one word. This system can be improved
somewhat, for example, with additional rules to modify the word order in the
target language, but the defining feature is the dictionary mapping phase.

Transfer is a more sophisticated method of translating between a language
pair. The dictionary-based system described above often produces ungrammat-
ical results, not to mention problems with semantics. If the words of a phrase
are translated without the context of the whole sentence, the translation is not
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guaranteed to get all the dependencies right, and the constituents will not be
inflected correctly in the translation.

The intermediate representation of a transfer-based system extends to
syntax and might include semantic or pragmatic features, for example word
sense disambiguation. Such system could even have very sophisticated rules
for handling the fine nuances, such as animacy or politeness, and it would know
not to translate idiomatic expressions literally. The essential difference between
transfer and interlingua is that a transfer-based system is always specific to
one language pair; in effect, it is still a bilingual dictionary, although more
elaborate. Many aspects of the representation are determined by the two
languages of a pair: the rule set for a pair of closely related languages is very
different from the rule set of two completely unrelated languages.

The interlingual system ranks the highest in the intermediate represen-
tation: it has to be abstract enough to be language independent. With an
interlingua, one could translate between any two languages, as long as both
have been mapped to the interlingua. Of course, the interlingual system has
to include morphological and syntactic analysis and generation, in order to be
used for any real language. The interlingua itself can be a human-readable, real
or constructed language—past examples include Esperanto (Witkam, 2006)—
or an abstract notation system. An abstract version of the interlingua could
consist of data structures that denote the syntactic and semantic properties
of the utterances, not just the properties relevant to one language pair, but
enough properties to cover all the languages that one wants to include in the
translation system.

In a broad sense, any pivot language can be considered an interlingua.
Suppose we have the languages L1, L2, L3, L4 and IL, and create the pairs
L{1-4}–IL and IL–L{1-4} using transfer. According to the broad definition,
the language IL is an interlingua. Texts can be translated between any two
languages L{1-4}, without defining rules for every possible pair. In the strict
sense, in order to be considered interlingual, the translation process should
consist of analysis and generation, rather than transformation of syntactic
structures. As for the scenario with L{1-4} and IL, IL is definitely a pivot
language, but because of the manner of the mapping between L{1-4} and IL,
it cannot be called an interlingua in the strict sense.
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Constructing a truly universal interlingua is, in practice, an impossible
task; see Madsen (2009) for a thorough analysis on the limitations of machine
translation. It would mean constructing a system that is prepared for every-
thing that a human could possibly utter, and a mapping from that representa-
tion to all possible linguistic systems—it would have to have the information of
all possible ways in which a meaning could be mapped to an utterance. How-
ever, interlingual approach has been used succesfully in certain applications,
with a specific domain, a relatively small lexicon and possibly syntactically
restricted input text.

Statistical machine translation We present the statistical machine trans-
lation (SMT) paradigm to give context to MOLTO. The modern machine
translation industry is predominantly based on the statistical method. SMT
has many advantages, especially for the needs of a casual user: it requires
less human work and it is more robust, which means that the user will get at
least some kind of output, enough to get an idea of the content. This level of
accuracy is called browsing quality, as opposed to publishing quality, which is
the aim of MOLTO. This section is just a quick overview of statistical machine
translation; for more information, see for example Lopez (2008).

In statistical NLP, language is modelled in terms of probabilities of word
sequences. Probabilities of translation equivalents are computed from bilin-
gual aligned corpora: given n-1 previous words in the source text, what is
the probability of the nth word ws being translated as wt? We express this
probability with P (wt|ws). For an example word saw, for the language pair
English–Spanish and with n=3, the probablity P (vio|saw) should be higher
in a context such as then she saw, and P (sierra|saw) in with a saw. Modern
SMT systems use sequences of varying lengths as the units to be aligned, but
the basic idea is the same: a sequence of 1 to n words in the source language
corresponds to a sequence of 1 to n words in the target language, and the prob-
ability of a translation given the source depends on the context provided by
other words. Possible reordering of the translation is handled with a language
model of the target language.

The quality of translation depends on many things, such as the languages
in question, the coverage of the corpora and the size of n. Translating to a lan-
guage with little morphology is easier than to a language with rich morphology;
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translating between two similar languages is easier than between very different
languages. Common utterances in general translate well: a fixed phrase like I
miss you is frequently attested, and a statistical system can give very idiomatic
results in different languages. However, if the phrase is part of a more complex
sentence, or has less typical persons, such as you miss me, the system has no
way to connect that to the frequently seen phrase, and the result can be poor
(Ranta, 2011b).

Statistical machine translation might seem imprecise or crude, but the
trend of recent years has been to develop a hybrid system, combining the best
parts of rule-based and statistical methods. In MOLTO, we have experimented
with this too, for example, by enhancing the bilingual corpora with alignments
generated by our grammars (España, 2011). This helps to solve the problem
with sparse data: by exhaustive generation we will get less common utterances
in the phrase tables, which makes the translation of you miss me as reliable
as I miss you.

2.1.3 Ambiguity in the context of machine translation

A natural language phrase can be ambiguous lexically or syntactically. Some-
times a third term, semantic ambiguity, is used to describe sentences that are
vague and open to interpretation, such that their meanings are not clearly
defined or agreed on. For example, the words describing size cover a very wide
range of absolute sizes depending on the context; a big mouse is always smaller
than a small elephant, and a big house may have different criteria depending
on the culture. Given that these descriptions are hard even for humans, we
exclude semantic ambiguity or vagueness and concentrate on lexical and syn-
tactic ambiguity, with the assumption that an ambiguous sentence has multiple
readings, but all possibilities can be enumerated, and the correct option for
each context is necessarily among them.

Lexical ambiguity is caused by homonymy or polysemy, that is, a single
word form has multiple meanings. If a sentence is lexically ambiguous, its syn-
tactic structure is clear, but it contains one or more homonymous words, and
the meaning of the whole sentence depends on the meaning of the homony-
mous word. Consider the example I put 100 euros in the bank. The sentence
can refer to depositing the money to a bank account, or burying the money in
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the mud on the edge of a river; the latter interpretation is unlikely for anyone
with world knowledge, but still technically possible.

Syntactic ambiguity means that a phrase has more than one possible syn-
tax tree. This can be due to homonymous words; especially function words
like prepositions or conjunctions, or content words whose homonym is in dif-
ferent class, e.g. duck ’aquatic bird’ or ’to lower’. The scope of operators can
also cause ambiguity, like in the NP old men and women, where it is unclear
whether the women are old too, or teachers of French and German, which can
refer to a set of teachers whose each member teaches both of the languages,
or a set of teachers whose each member teaches only one of the languages.
A syntactically ambiguous phrase need not have distinct truth values for each
syntax tree: for example, the NP young boys and girls has the same two parses
as the version with their older counterparts; young might modify only boys or
boys and girls, but in either case, both boys and girls are young by definition.

When we say that natural languages are ambiguous, we need to specify in
relation to what. The objective of machine translation is to provide a mapping
between two or more representations of some kind of reality; it is a problem
of artificial intelligence to act in a meaningful way in that reality. In machine
translation, problems arise only when the source language has less elaborate
distinctions than the target language, and the translation requires information
that the original does not state explicitly.

For example, the Finnish personal pronouns do not differentiate between
gender, and nouns and noun phrases do not have obligatory definiteness mark-
ing, such as articles. When a Finnish text is translated into a language with
the same features, the readers of the translated text get the same information
at the same level of ambiguity, and they will do the same reasoning as the read-
ers of the original sentence. But if the text is translated into a language that
requires such distinctions, the translator has to make a choice, which could be
different from what the author meant.

Human translators normally translate documents considering a complete
paragraph or section, and they might do paraphrasing, such as altering the
order in which the information is presented or omitting some details that are
irrelevant to the intended audience. Many MT systems have a translation
unit of one sentence or even shorter, and it is not possible to use context
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outside of it. In many cases, a translation unit of one sentence is enough: it
is syntactically complete, that is, all syntactic dependencies and agreements
can be caught when translating complete sentences. Translating each sentence
is a secure way to get all information through; the translation system is not
meant to judge which information is important, it just translates everything,
preserving the structure of the document. For that purpose, translation unit
of one sentence is justified. As for ambiguity solving, most of the techniques
work with a window of one sentence. Means for solving lexical ambiguity
include looking for words nearby; often they are found within the sentence.
In cases of syntactic ambiguity, the context of other sentences does not solve
that, unless the parses have different meanings, and the environment provides
semantic cues to determine the right parse. Thus extending a translation unit
to a paragraph or document would make a difference in few cases; most of the
time it would just increase the complexity of the system.

2.2 Ontologies

In this section we discuss ontologies. First we introduce some basic concepts,
in section 2.2.2 we talk about the sources of ontologies and in section 2.2.3 we
present some uses of ontologies.

2.2.1 Basic concepts

In information science, ontology means a collection of concepts and relation-
ships between them. The relationships include things like category member-
ship (“Garfield is a pet”, “Wading is a form of movement”) and properties of
the instances (“Garfield is fat”) and categories (“Pets have owners”)—from the
structure it is possible to infer that Garfield has an owner, even if it is not
explicitly stated. Ontologies have a hierarchical structure, starting from a
generic superclass, such as Thing or Entity, to more specific subclasses. An
ontology may be domain-specific, with very detailed descriptions, or it can be
general and contain broader statements. These general ontologies, called upper
ontologies, can be used to make different domain ontologies interoperable.

As for technical details, the examples are in a format called Resource
Description Framework (RDF), where the information is presented as triples
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of subject, predicate and object. One triple describes one thing about the
subject, such as name, superclass, or more domain-specific details: for a person,
important details might include age, family relations and job; for art objects,
the artist, current location, size of the object and such.

Another important concept is Uniform Resource Identifier (URI), defined
by Berners-Lee et al. (2005). Anything that can be identified by a URI is called
a resource. They can be concrete documents available in the web or abstract
representations: a URI of an image can be a fully functional address (URL)
that points to the actual data, but for an entity such as person or abstract
concept, a URI is just a name that identifies and represents it. Predicates of
the triples are like any other item: a concept such as age is represented by
a URI, and that URI can be used in a triple whose subject is a person and
object is a number. An item can be a subject in one triple and a predicate or
an object in other. The object of a triple can be a URI or a literal, such as
an integer or plain text, but subject and predicate must be URIs. Below is an
excerpt from an ontology entry of Mona Lisa.

@prefix dbpedia: <http://dbpedia.org/resource/> .

@prefix dbp-prop: <http://dbpedia.org/property/> .

dbpedia:Mona_Lisa dbp-prop:artist dbpedia:Leonardo_da_Vinci .

dbpedia:Mona_Lisa dbp-prop:museum dbpedia:Louvre .

dbpedia:Mona_Lisa dbp-prop:name "Mona Lisa"@en .

dbpedia:Mona_Lisa dbp-prop:name "La Gioconda"@it .

The notation prefix is a way to shorten the URIs; in full form the URI
for Mona Lisa would be http://dbpedia.org/resource/Mona_Lisa, and for
name http://dbpedia.org/property/name. The objects of the latter two
triples do not have a URI for them, they are string literals and denote the
name of the object in English and Italian.

2.2.2 Ontology sources

The unchallenged assumption in this thesis is that we have an ontology in which
natural language ambiguities and different meaning clusters across languages
are resolved, and all we need to do is to specify a domain to get a list of
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well-defined concepts in multiple languages. The other end of text-ontology
interoperability is the creation of the ontologies: either building manually or
learning automatically from free or semi-structured text. Ontology acquisition
is a subfield of information extraction, and is outside the scope of this study;
for an overview see e.g. Buitelaar et al. (2005).

There is a lot of information in free text, that is, collected by humans and
meant for humans, not structured in a machine-readable way. In addition to
free text, there are semi-structured data collections, such as Wikipedia. Instead
of building ontologies manually, they can be learned from these sources—for
example the ontology DBpedia gets its content from Wikipedia articles. The
subclass and superclass relations are derived from the categories, and other
relations, such as date of birth for humans, come from Wikipedia’s infoboxes,
which have a fixed format. The translations for the concepts come from the
different language versions of the articles. In addition, the data is linked to
other free data sources on the web, as a part of the Linked Data initiative
(Bizer et al., 2009).

Seppo Nyrkkö’s doctoral thesis, also a part of MOLTO, explores further
aspects of text and ontology. Nyrkkö uses various types of resources to unify
the information from many sources; for example, the same topic can be covered
in a general ontology, a specialised ontology and free text, and Nyrkkö uses
both statistical and rule-based methods to compute similarities between the
concepts. The study is presented in more detail in section 5, along with other
related work.

2.2.3 Ontology uses

A concrete motivation for well-structured, machine-readable way of represent-
ing information is the fact that there is so much information in the world.
Linked Data, described in Bizer et al. (2009), is a model of structuring and
connecting the data on the web. The hypertext web links documents to each
other—the unit of information is a web page, and the links do not have any
finer semantics. Bizer et al. (2009) make a distinction between untyped and
typed hyperlinks ; a simple hyperlink from a document to another is untyped,
while an RDF link is typed, because the predicate of the triple expresses the
type of the connection between the subject and the object.
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In a hypertext web, a page describing an artist might include a link to a
page describing a song she has performed. If the page about the song is very
informative, one can find there a list of other performers, and get a complete
list of everyone who has ever performed that song. In a linked data model,
artists and songs are resources, and can be linked to each other by different
types of relations, one of which is performs or, conversely, performedBy. If
someone—human or computer—browsing the linked data graph wants to know
all songs performed by a certain artist or all performers of a certain song,
the information can be retrieved easily, without anyone having to manually
gather and update a separate document describing just that. Information is
distributed on different parts of the web and can be dynamically fetched when
needed. This technology forms the basis of automatic question answering. The
difference between a document search engine, such as Google, and a question
answering system, such as Wolfram Alpha is that the former type of engine
returns documents that contain the search terms. The latter type returns
answers that are not necessarily presented in that exact form in any single
document. By traversing the links between the data, a question answering
system can find, process and present information that answers the user’s query.

2.3 Human-computer collaboration

Labour can be divided between human and computer according to different
models. In this section, we look at two ways for humans and computers to
collaborate.

The termWeb 2.0, first used in 2005 (O’Reilly, 2007), describes the WWW
as a platform of collaborative work; anyone can be both a publisher and a
consumer of information. The “version number” 2.0 does not mean a concrete
change in any core technologies, but is called that as opposed to the earlier
stages of the WWW, which resembled traditional publishing. Crowdsourcing
is another phenomenon that blurs the line between experts and amateurs. An
example of crowdsourcing is providing different language versions of a website
with the help of its users instead of hiring professional translators for the task.

For Web 3.0, no one clear definition exists, but one definition focuses on
the type of collaboration between human and computer. Whereas work typical
of Web 2.0 is done by humans for humans, in Web 3.0 a few experts do work
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initially directed to computers, for example creating ontologies. In this model,
information is in a form that is of little use for a non-specialist, but ultimately
representing a taxonomy in a machine-readable format will shift a lot of tedious
work from the human to the computer.

In the domain of multilingual websites, translation as a community project
is the first approach. Almost anyone who knows the language can contribute,
and when there are many people, everyone’s workload is small. There is con-
stant but minimal work: whenever the website updates, it is easy to get some-
one from an active user base to translate the changes. The collaboration model
employed in MOLTO belongs to the latter approach. The initial effort of cre-
ating multilingual grammars for the domain is big, but after that, there is no
need to retranslate; updates to whichever document are generated simultane-
ously into all language versions. This process can be described as multilingual
content creation in addition to machine translation. The technical details of
the grammars will be explained in the next chapter, section 3.1.

3 Resources

This chapter introduces the resources that the MOLTO project offers. Un-
like the previous chapter, which discussed general theoretical background, this
chapter refers to specific programming languages, techniques and data collec-
tions that are available for the task of lexicon management. This is not a list
of everything included in MOLTO, just the resources that are relevant to this
study.

In section 3.1, we introduce the programming language Grammatical Frame-
work, which is used to write the multilingual grammars. The data collection
FactForge, which combines many ontologies and data sets, is presented in
section 3.2. The other resources are the terminology platform TermFactory
(section 3.3) and the lexical database WordNet (section 3.4).

3.1 Grammatical Framework

Grammatical Framework (GF) is a grammar formalism and a typed functional
programming language, specialised in representing multilingual grammars. A
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GF grammar includes an abstract syntax and one or more concrete syntaxes.
The abstract syntax declares the kinds of concepts and utterances that can
be expressed in the grammar, and in a concrete syntax they are given rep-
resentations in some real language. The mapping between the abstract and
the concrete syntax is two-way: the direction from concrete syntax to abstract
syntax is called parsing, and the direction from abstract to concrete is called
linearisation.

In the context of multilingual translation, the abstract syntax functions as
an interlingua. The translation process consists of parsing from one language
to the abstract syntax and linearisation from the abstract syntax to all other
languages. The abstract syntax tree describes semantics; what gets translated
is the meaning, not the syntactic structure. Language-dependent elements are
handled in the concrete syntax of each language. Abstract syntax is discussed
in detail in section 3.1.2 and concrete syntax in 3.1.3.

3.1.1 Functional programming basics

The theoretical background of GF is in functional programming and type the-
ory. GF is a typed language: all values have a type, and the compiler per-
forms a type check to ensure that the functions operate on appropriately typed
data, as a way to prevent programming errors. In the functional programming
paradigm, computation is done by evaluating functions, not by changes of
state. There are no global variables or reassignment; the only variables are
function internal. All values are produced by evaluating a function or a chain
of functions, in which the result of each function is passed on as an argument
to the next function in the chain. Functions can be passed as arguments and
returned by other functions, and function literals can be formed. All enti-
ties with these properties are called first-class objects, and in GF this includes
functions; primitive data types, such as integers and strings; and composite
data types, such as records and associative tables.

A function has a return type, which is the type of the first-class object
returned by the function, and a type signature, which means the types of the
arguments and the return type of the function. A function that takes as its
arguments two integers and returns an integer has a return type Integer and
a type signature of Integer → Integer → Integer. Any first-class object
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can be an argument or a return value: for example, a type signature
Integer → {s: String, i: Integer} → (Integer → String →
String) denotes a function which takes an integer and a record as its ar-
guments, and returns a function. The returned (Integer → String →
String) is the type signature of the constructed function, and the return type
of the constructing function.

A constant is an argumentless function: it only returns a value, so its
type signature is the same as its return type. Argument-taking functions take
a value and return a new value. In GF grammars, the atomic lexical items
in the language—nouns, adjectives, verbs, adverbs, conjunctions—are imple-
mented as argumentless functions, called lexical functions. The functions with
arguments, phrase-building functions, take lexical items as their arguments and
produce more complex structures. However, there is no formal distinction be-
tween the two kinds of functions, we introduce the terms mainly for the human
reader’s sake.

3.1.2 Abstract syntax

The abstract syntax consists of category1 declarations and function declara-
tions. Let us now look at an example grammar, which, for simplicity, allows
only noun phrases. The categories of the grammar are Determiner, Quality,
Kind and Item. Every complete construction in this grammar will belong to
the category Item, making it analogous to the start symbol in context-free
grammars. Program 1 shows a complete abstract syntax of a GF grammar.

The grammar has six lexical functions: This, These, Big, Red, House and
Dog. On the left side of the colon is the name and on the right is the return type
of the function. The lexical functions are analogous to the terminal symbols in
context-free grammars. There is no lexical function that would just return an
Item, just as in context-free grammars the start symbol is not usually followed
by terminal symbols.

In our grammar, we want an Item to be composed of one Determiner,
one Kind and zero or more instances of Quality. The phrase-building function
Mod takes two arguments: one of type Quality, another of type Kind, and

1As for terminology, we will use the terms category and type interchangeably. Saying
that a value belongs to a category X means the same that the type of the value is X.

15



Program 1 The abstract syntax of a noun phrase grammar
abstract NounPhraseGrammar = {

flags startcat = Item ;

cat

Determiner ;

Quality ;

Kind ;

Item ;

fun

-- lexical functions

This : Determiner ;

These : Determiner ;

Big : Quality ;

Red : Quality ;

House : Kind ;

Dog : Kind ;

-- phrase-building functions

Mod : Quality -> Kind -> Kind ;

Det : Determiner -> Kind -> Item ;

}
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constructs a new element of type Kind out of them. Det takes a Determiner

and a Kind and produces an Item. Valid abstract syntax expressions in this
grammar are shown in figures 1 and 2.

Figure 1: Det This Dog

Figure 2: Det These (Mod Big (Mod Red House))

In the first example, the function Det is applied to the values returned
by the lexical functions This and Dog. The second example demonstrates
the function Mod, which adds a Quality to a Kind. The brackets show the
application order of the functions: first the innermost expression Mod Red

House is evaluated into an element of type Kind. Then the next Mod is applied
to the Quality returned by Big and to the Kind returned by Mod Red House.
Finally, the function Det is applied to the determiner These and to the result
of the two Mod applications, and the final result is an element of type Item.

By looking at the abstract syntax one cannot know how the functions are
linearised in the concrete syntax. In one language, adding a Quality to a Kind
might be a matter of trivial concatenation, whereas in some other language
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it might have complicated rules, including agreement in number, gender and
case. On the one hand, writing the abstract syntax is easy, since the grammar
writer need not know the implementation details of the functions in various
languages. On the other hand, that is exactly what makes the abstract syntax
writing hard: it really needs to be abstract. In the earlier example, we have
deliberately used non-grammatical terms; quality instead of adjective, kind
instead of noun. Such constructions may not exist in all languages, so it
is better to use common descriptions instead of grammatical categories of a
specific language.

3.1.3 Concrete syntax

When we build a concrete syntax for some language, we have to give both
categories and functions concrete definitions. The categories are linearised
as data structures, and the lexical functions have these data structures, with
appropriate data, as their return values. The phrase-building functions are
implemented for each language in a different way, to handle the data structures
specific to that language.

The kinds of data structures needed depend on language. Even in our
small noun phrase grammar with no verb morphology nor adjective compara-
tion, we have to consider the inflection and the agreement of nominals. English
only requires number agreement (with determiners and nouns, not with adjec-
tives), in Spanish there is also gender agreement and in Swedish, in addition
to the two, definiteness agreement: the definiteness of a noun phrase is marked
in all constituents, whereas in English only the determiner carries that infor-
mation.

Let us look at the categories Kind and Quality. In English concrete
syntax, the data structure for Kind needs a field with two options, one for
singular and one for plural. Quality needs only one option, because there is no
number distinction in adjectives. In Spanish, both nouns and adjectives have
separate singular and plural forms. Nouns have a fixed gender and adjectives
have two gender forms, from which one is chosen determined by the gender of
the noun they modify. Thus in Spanish concrete syntax, Kind needs a field for
the noun, with singular and plural forms, and an additional field for expressing
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Program 2 The concrete syntax of a noun phrase grammar
concrete NPEnglish of NounPhraseGrammar= {

param Number = Sg | Pl ;

lincat

Determiner = {s: Str ; num: Number} ;

Quality = {s: Str} ;

Kind = {s: Number => Str} ;

Item = {s: Str} ;

lin

-- the lexical functions

This = {s = "this" ; num = Sg} ;

These = {s = "these" ; num = Pl} ;

Big = {s = "big"} ;

Red = {s = "red"} ;

House = {s = table {Sg => "house" ; Pl => "houses"}} ;

Dog = {s = table {Sg => "dog" ; Pl => "dogs"}} ;

-- the phrase-building functions

Det det kind = {s = det.s ++ kind.s ! det.num} ;

Mod qual kind = {s = table {Sg => qual.s ++ kind.s ! Sg ;

Pl => qual.s ++ kind.s ! Pl}} ;

}
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the gender of the noun, and the s field in Quality includes 4 options, for all
combinations of {singular, plural} and {masculine, feminine}.

When the categories are defined, we can start writing the concrete syntax
functions. Defining the lexical functions means basically filling the slots: we
can linearise House by typing the strings house and houses to the correct fields
in the data structure that is common to all Kinds, and have House to return
that value. The phrase-building functions are more complicated, since they
take arguments and perform operations on them. A Mod in English does only
concatenation: it takes the only string value of the Quality and the two options
of the Kind, and constructs a new Kind, whose fields will have the combined
values. The Spanish Mod has to select a correct gender, since Quality has two
gender options, but Kind has a fixed gender.

In our grammar, a value of type Determiner is the element that completes
a Kind into an Item. This means that the incomplete noun phrase Kind has
some of its options open. The start category of the grammar, Item, always has
only one field: it has all its constituents in the right forms, the combination
determined by evaluating the Item-forming expression from the bottom to the
top, starting from multiple possibilities in the atomic categories and dropping
impossible ones along the way.

As for English, when Mod Red House is evaluated, the resulting Kind con-
tains the combinations red house and red houses. The number options of Kind
are open, and the category Determiner must have an inherent number in order
to choose the matching value in Kind.2 The example grammar has inherently
singular and plural determiners This and These, which include the string rep-
resentation of the word and the parameter that is used to choose the right
value from the Kind. This way, the linearisations of the following expressions
will have the right agreement.

Det This (Mod Red House) ===> "this red house"

Det These (Mod Red House) ===> "these red houses"

The decision that a determiner completes a common noun (CN) into a
noun phrase comes from a tradition of logical semantics (Ranta, 2011a). The

2This is implemented with an associative table, with the number as the key and the string
combination as the value. The number belongs to a parameter type, which is used only as a
table key. In GF syntax: table {Sg => “red house” ; Pl => “red houses”}.
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idea is that a CN is a description and with a determiner it is quantified. From a
linguistic point of view, this is not always the best option: determiners do not
necessarily include number in all languages, or they are not obligatory to form a
noun phrase, or there might be more than two number categories. However, all
this can be handled, because GF itself is not based on any particular syntactic
theory, and it gives a lot of freedom with respect to implementing different
linguistic features.

3.1.4 Resource grammars and application grammars

Writing a large-scale GF application would be really tedious, if syntactic and
morphological functions had to be implemented separately for every language
in every application. For example, the GF grammars for the mathematics
case study and the museum case study seem different: the structure and the
types of the abstract syntax reflect in each grammar the distinctions that are
important in that particular domain. In terms of abstract syntax, the two
grammars have little in common. However, if we look at the concrete syntax
level, the Finnish concrete syntax of a mathematics grammar inevitably shares
a lot with the Finnish concrete syntax of a museum grammar. The syntax and
morphology of a language do not change according to the domain: whether
we talk about mathematics or museum objects, there is no difference in the
way that nouns inflect or a modifier attaches to a head. This is why syntax
and morphology are moved to a module, called resource grammar, that can be
shared by many different applications. Like any software library, it is imported
to the application grammar, where its functions can be used without knowing
how they are implemented.

The resource grammar is a GF grammar that implements the basic syntax
and morphology of a language, including also a core lexicon of around 350
words. As of November 2012, 25 languages have a resource grammar, and
they are all freely available as open-source libraries. Each resource grammar
consists of two parts: one which includes the categories and operations common
to all languages in the resource grammar library, and other which includes
syntactic structures specific to each language. For the language-specific part,
each language has its own abstract syntax and concrete syntax. The common
part has a common abstract syntax and 25 concrete syntaxes.
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The categories of the resource grammar are linguistic categories, like ad-
jective, verb phrase or relative clause. The resource grammar functions operate
on the categories. Program 4 shows some function declarations from the ab-
stract syntax of the resource grammar. The type CN is a common noun, it
includes an obligatory noun and arbitrarily many modifiers. The types AP, RS
and Adv, respectively adjective phrase, relative clause and adverb, are allowed
to modify the CN, making the result still a CN. The type Det, determiner, can
complete a CN into a noun phrase.

Program 3 Fragment of the abstract syntax of a resource grammar
fun

AdjCN : AP -> CN -> CN ; -- big house

RelCN : CN -> RS -> CN ; -- house that John bought

AdvCN : CN -> Adv -> CN ; -- house on the hill

DetCN : Det -> CN -> NP ; -- the man

The fraction is from the common part of the resource grammar’s abstract
syntax. What is declared here is that all languages should have nouns and
adjectives, and they should be able to combine. The functions are implemented
for each language in their own concrete syntax. For the end user there is an API
with consistent function names, such as mkN, mkCN, mkVP, which are overloaded
with the many possibilities on how to construct a CN. The user just needs
to write mkCN <arguments> to construct any type of CN, without having to
specify whether it is an AdjCN or RelCN.

Now, what is left for the application grammar developer to do, if she need
not write rules about how a modifier attaches to the head? In our toy grammar
not much, aside from defining the lexicon, but in a more elaborate grammar
there are semantic and pragmatic issues to consider. Below is an example from
the abstract syntax of a tourist phrasebook grammar.

Program 4 Fragment of the abstract syntax of an application grammar
fun

AHaveCurr : Person -> Currency -> Action ; -- you have dollars

ACitizen : Person -> Citizenship -> Action ; -- you are Swedish

ABePlace : Person -> Place -> Action ; -- you are in the bar
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The functions are very specific, compared to those of a resource grammar,
and the categories are not grammatical categories, but semantic descriptions.
In the resource grammar it would not make sense to have a specific category
for currency or citizenship, but in an application grammar it could be an
important distinction, with respect to style or other pragmatic issues.

The phrases are constructed in their respective concrete syntaxes with any
resource grammar operations that the grammar writer chooses. For example,
AHaveCurr is a function in the abstract syntax of an application grammar. It
is linearised in the English concrete syntax using the English resource gram-
mar, and in the Finnish concrete syntax using the Finnish resource grammar.
There is no need for the English and Finnish linearisations to have an identi-
cal syntactic structure, in terms of linguistics, yet they both map to the same
abstract syntax tree, and thus are each other’s translations. This allows the
sentences to sound more natural and idiomatic in each language. An abstract
syntax category like VerbalAttribute could be linearised in some language
as a relative clause and in another language as a gerund. Or a phrase-building
function ALikesB could be linearised in English with A as the subject and B
as the direct object, A likes B, and in Spanish with B as the subject and A as
the indirect object, literally B pleases A.

3.1.5 Semantic restrictions in GF

Given GF’s theoretical background, it is possible to express conditions of se-
mantic well-formedness in the grammar. The resource grammar operates with
types such as noun phrase, transitive verb or conjunction, and a VP-making
function could take any V2 and NP and construct a VP out of them, regardless
of their meanings. For expressing semantic restrictions in an application gram-
mar, we can use in the abstract syntax more elaborate types. The phrasebook
example, AHaveCurr : Person → Currency → Action, guarantees that
we cannot apply the function AHaveCurr to any two noun phrases, rather,
they have to be noun phrases whose abstract syntax types are Person and
Currency. Even more expressivity is gained by the use of dependent types,
such that it is possible to represent a complete ontology in GF. We will present
these methods in the following subsections.
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Dependent types The distinctions such as separating humans from objects
are broad enough to have their own categories. But sometimes we need even
finer distinctions, which may only apply to certain constructions. For example,
in the domain of museum object descriptions, the people appearing in the
texts are likely to be either artists or subjects. As a concrete motivation for
fine-tuning the semantic distinctions in a grammar, we examined the corpus
provided by Göteborgs Stadsmuseum, and found out that the descriptions
artwork of (depicting) and artwork by (authored) are often expressed with
the same construction, using the Swedish preposition av for both meanings.
Without any context, an expression like ett porträtt av Mona Lisa is ambiguous
as to whether Mona Lisa is the subject or the painter.

As a solution, we could split the abstract syntax category Person into two
categories, Painter and Subject, and define the functions authoredBy and
depicting so that they accept only one as their argument. This way, even
if the constructions are identical, the type of the argument disambiguates the
expression. Program 5 shows this approach.

Program 5 Restrictive abstract syntax, without dependent types
cat

Painting ;

Painter ;

Subject ;

fun

portrait : Painting ;

authoredBy : Painting -> Painter -> Painting ;

depicting : Painting -> Subject -> Painting ;

Mona_Lisa : Subject ;

Leonardo : Painter ;

However, separating painters and subjects would prove too restrictive:
after all, there are many portraits depicting painters, but the grammar would
not allow a painter to be in any other role than an author—a portrait of
Leonardo da Vinci would be considered a syntax error and not be parsed.
Furthermore, if there are functions common to all people, such as being born
or dying, each of them would have to be defined separately for painters and
subjects. There are some actions that can only be done to one of them, but
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since the majority of the actions are the same, it may not be feasible to put
them in different categories.

What can be done, instead, is to define dependent types. In addition
to the simple type Person, we add dependent types Painter and Subject,
which take Person as argument, producing the types Painter Person and
Subject Person. They provide a semantic layer on top of the syntactic level,
more flexible and easier to modify. Program 6 shows the same excerpt from a
museum grammar, with dependent types:

Program 6 Restrictive abstract syntax with dependent types
cat

Painting ;

Person ;

Subject Person ;

Painter Person ;

fun

Mona_Lisa : Person ;

Leonardo : Person ;

portrait : Painting ;

authoredBy : Painting -> (p : Person) -> Painter p -> Painting ;

depicting : Painting -> (p : Person) -> Subject p -> Painting ;

-- proof objects

Mona_Lisa_Subject : Subject Mona_Lisa ;

Leonardo_Painter : Painter Leonardo ;

The declarations of portrait, Mona Lisa and Leonardo da Vinci are not dif-
ferent from what we have seen before. Let us look at the functions authoredBy
and depicting. Like before, they take a Painting and a Person as their ar-
guments and construct a new value of type Painting. The notation (p :

Person) is a way to bind a variable to the argument type, so that we can
refer to the same argument later. The third argument is of the dependent
type Painter p or Subject p, in which the variable p must be the Person

given as the second argument. The last two functions in the grammar assert
which combinations of persons and roles are valid. They are called proof ob-
jects ; technically they are (argumentless) functions just like any other under
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the fun title, but their purpose is to control that the function’s arguments are
semantically valid, and they are not linearised in the concrete syntax.

It is possible to define many proof objects for one element. Say we want
to add a self-portrait into the lexicon, and require that an author of a self-
portrait can only be a person who is both a subject and a painter. To do
this, we would add to the abstract syntax a function that constructs the self-
portrait, and accompanying proof objects for each painter who has done a
self-portrait. Below is an example for Leonardo da Vinci.

Program 7 Semantic requirements for the author/model of a self-portrait
fun

selfportrait : Painting -> (p : Person) ->

Painter p -> Subject p -> Painting ;

Leonardo_Subject : Subject Leonardo ;

To sum it up, the function authoredBy can be applied to any painting,
and any person p, for which there is a proof object Painter p defined. Adding
dependent types does not rule out anything previously done. The basic type
of all people is still Person. In addition, Leonardo da Vinci belongs to the
categories Painter Person and Subject Person, and Mona Lisa to Subject

Person. If some language treats the owner of a portrait in a way that results
in ambiguity, it is easy to add a new type, Collector Person, and write a
proof object for each person who is a collector.

GF and ontologies So far our concern has been to handle the ambiguity
of natural language, in this case the same preposition being used for author
and subject. This kind of solution is not enough to guarantee semantic well-
formedness in all aspects—for instance, the function selfportrait does not
determine that a painting is actually painted by Leonardo, rather, it only
checks that Leonardo is a possible choice for an author of a self-portrait. But
we could still claim that any portrait is a self-portrait of Leonardo: the function
only checks whether the potential author has ever been a subject, nothing
about the painting itself.

To ensure that the painting really is a self-portrait, we need a more com-
plex structure. Dependent types can take more than one argument: for all
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requirements of a self-portrait, we need a type constructor that takes both
Person and Painting.

Program 8 Complete semantic requirements for a self-portrait
cat

Person ;

Painting ;

Authored Person Painting ;

Depicting Person Painting ;

fun

Portrait_of_a_man : Painting ;

Mona_Lisa : Painting

Leonardo : Person ;

depicting : (pe : Person) -> (pa: Painting) ->

Depicting pe pa -> Painting ;

authoredBy : (pe : Person) -> (pa: Painting) ->

Authored pe pa -> Painting ;

selfportrait : (pe : Person) -> (pa: Painting) ->

Authored pe pa -> Depicting pe pa -> Painting ;

Authored_Leonardo_ML : Authored Leonardo Mona_Lisa ;

Authored_Leonardo_PAM : Authored Leonardo Portrait_of_a_man ;

Depicting_Leonardo_PAM : Depicting Leonardo Portrait_of_a_man ;

Doing this manually would be a demanding task. Even in the toy example
above, the function declarations get quite heavy. The grammar is starting to
look like an ontology: it does not just give us syntactic rules on how to say
something about paintings and subjects, but it requires that what we say
is based in reality. Thus it should be no surprise that an ontology can be
translated to GF (Enache, 2010). GF’s support for dependent types, which
was used for fine semantic distinctions in the previous section, can be used
to represent the whole inheritance hierarchy of an ontology. Reasoning is also
done in the type system.

Classes are represented as values of type Class, and statements have
value of some type DepType Class (Class)+. For example, Painting and
Artefact are values of type Class, and a rule saying that painting is a kind of
artefact is of type Inherits Painting Artefact. There are inference rules
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taking care of e.g. transitivity and self-inheritance; for the latter property the
rule is a function of type (c : Class) -> Inherits c c. Instances are also
covered by the type system: Mona Lisa’s immediate superclass is Painting,
so it is of type Ind Painting, and it can be coerced to indirect instance of
Painting’s superclass, such as Artefact or any of its superclasses.

However, GF is not optimised for doing ontology reasoning (p. 35); most of
the work done in this area has been proof of concept, not an attempt to design
a large-scale system. We will not cover the topic any further in this study, for
more information see Enache (2010) and Angelov and Enache (2011).

Even without elaborate semantic restrictions, ontologies could prove useful
simply as the source of the lexicon. Ontologies are based on concepts, not
words, so they are a good source of abstract syntax lexical elements. Next we
will see the ontologies that are used as a resource in this project.

3.2 FactForge

FactForge is a collection of data sets and ontologies. It is hosted by Ontotext,
a company specialised in semantic technology. It consists of 15 open data sets
and ontologies, gathered all around the web, whose items are linked to each
other: for example, an entry about a singer in a general ontology would be
linked to her discography in a music ontology. In technical terms, the URI
representing the singer appears in the general ontology in certain triples, such
as name, date of birth and nationality. In a more specialised music ontology,
the singer might be represented by a different URI and appear in different
triples, such as vocal range. By interlinking the entries, a user can do a query
on all ontologies and get all facts on the singer, even if they are originally
from different sources. The number of all statements in FactForge, explicit
and inferred, is over 2 billion (Damova, 2012).

FactForge is a useful source for MOLTO, because the terms often have
translations in many languages. However, there is no morphological or syntac-
tic information, aside from part of speech information provided by WordNet,
which is one of the datasets. As for more general details, FactForge is free to
use, has wide coverage of facts from different domains and is updated approx-
imately once per month. The main purpose of FactForge in this study is to
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provide terms, as described in section 4.2; in addition we talk about a natural
language query tool for FactForge in section 4.2.1.

3.3 TermFactory

TermFactory (TF) is a platform and a collection of tools for collaborative mul-
tilingual term management. The style of work is a combination of Web 2.0
and 3.0: people are the ones doing the work, but in a structured way, using
a specific machine-readable format. In addition, an expert community is re-
sponsible for reviewing the quality of the work. Translations can be confirmed
or rejected, and new translations can be added. The result is a term collection
whose entries include a variety of information that can be used in NLP appli-
cations, such as inflection paradigm and valency. There are more immediate
benefits for the users, such as collaboration: many people can benefit from one
person’s contribution, and the users need not do work that someone else has
already done.

It is a challenge for usability to make the editing system precise enough
that the editors will enter acceptable data, but easy enough that the editing
does not require expertise in linguistics or ontologies. The front end of TF
is implemented on Mediawiki3, and the term editor is based on CKEditor4.
Figure 3 shows the view for TF.

For concrete motivation, we consider short examples of the type of things
that TermFactory could be used for. A possible scenario is that we have an
ontology that has no name predicate, that is, the concepts are represented
by URIs or other identifiers not directed to human readers. In TF we do
not modify the original ontology—it need not even be physically located on
TF server. Instead, we make a local extension on TF platform, enhancing
the ontology with the data we need, in this case names or labels in natural
language(s).

Another scenario is to map ontologies to other ontologies (section 4.4.2).
Say we have ontologies of different museums, and each has information about
artworks, artists, painting materials and such. They use slightly different
triples, but basically all express very similar things. Instead of every mu-

3http://www.mediawiki.org/wiki/MediaWiki
4http://ckeditor.com/
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Figure 3: Edit view of TermFactory

seum doing their own conversion from ontology to GF concrete syntaxes, we
could build a general museum ontology in TF platform or choose one of the
existing ontologies, map every museum’s own ontology to that, and write only
one GF grammar, for the general museum ontology.

In this project, TF will be used as a bridge between GF and FactForge.
FactForge does not include morphological and syntactic information, which
means that it is not possible to generate GF grammars completely automat-
ically from the ontology. TF is used as an intermediate step; the user brings
the terms over to TermFactory for the community to review and enrich the
entries. The process is discussed in more detail in section 4.4.
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3.4 WordNet

WordNet is a lexical database of open-class words, that is, nouns, verbs, ad-
jectives and adverbs (Miller, 1995). It is organised as a network whose nodes
are sets of synonyms, where each set expresses a concept, explained by a brief
and descriptive gloss. The sets are interlinked such that from a single word
form it is possible to retrieve both its synonyms and homonyms, that is, other
words from the same synonym set and other senses of the same form. There
are semantic relations defined between the synonym sets, such as synonymy,
antonymy, hyponymy and hyperonymy, and entailment relations: for example,
in order to divorce, one has to marry first.

The original WordNet project was started in the University of Princeton
in the 1980’s. Since then there have been updated versions of the original,
and versions in different languages, either by translating the original or col-
lecting terms from scratch (Pääkkö, 2011). The English version includes part
of speech and inflectional morphological information (go and went are forms of
the same lexeme), but not derivational information (interpret and interpreter
are distinct entries). Other language versions might have different informa-
tion: for example, the Finnish WordNet entries include the inflection types of
the words, based on the classification by the Institute for the Languages of
Finland5.

WordNet is an ontology in the sense that it is a collection of concepts and
relations. The hyponym–hyperonym relation is basically a subclass–superclass
hierarchy, which covers the majority of nouns. WordNet has been used in many
applications, such as question-answering systems and word sense disambigua-
tion (Pääkkö, 2011). In MOLTO it could be used as a source of synonyms or
glosses. In section 4.1.3 we present a method in which the lexical items in a
grammar are disambiguated by explanations in parentheses; these explanations
could be taken from WordNet glosses.

4 Use cases

Having presented the prerequisite information about resources and theoreti-
cal background, we move on to the objective of this study. Namely, we will

5http://kaino.kotus.fi/sanat/nykysuomi/
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cover three different use cases: disambiguation (refsec:disambiguation), lexicon
extension (4.2) and ontology verbalisation (4.3).

From the end user’s point of view, the goal is to have a translation system
that is useful. It has to have a comprehensive and easily extendable vocabulary,
relevant to the domain of the system. Syntactic structures need not be modified
on the fly—this is a considerably harder task, and not that crucial. In a typical
scenario, it is not realistic to build the system to handle completely unrestricted
text, at least not without a statistical back-off. When using systems based on
controlled natural language, in the case of parse error, the user should change
the structure of the input sentence instead of the grammar.

However, modifying the vocabulary should be possible for any user, with
little effort and no technical expertise. Language skills in all different languages
should not be needed either; with the ontology as a lexicon harvesting aid, one
should trust to find concepts and translations to them, instead of just words,
whose senses may not overlap in different languages. In section 4.2 we discuss
the topic of ontology as the source of lexicon, covering both theoretical and
practical questions.

Disambiguation, discussed in section 4.1, is another relevant issue in ma-
chine translation. If a sentence in the source language is ambiguous, the pro-
gram could either choose one translation, in which case the result is less re-
liable, or show all options to user, which is a usability issue, especially if the
user is unfamiliar with some or all of the target languages. Ontologies can help
with disambiguation, but it may come with the cost of making the grammar
too complicated and inefficient.

One option is to base the whole grammar on an ontology. In this case, it
is not a question of machine translation as such, but ontology verbalisation. In
terms of GF, the process consists of linearisation without the parsing phase.
The ontology provides the concepts and relations, and the problem is to form a
coherent and meaningful textual representation, as well as a way of conceptual
authoring—the starting point is not a text written in some natural language,
but a meaning, or perhaps a query for which the answer is fetched from an
ontology and verbalised. This approach is discussed in section 4.3.
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4.1 Disambiguation with ontologies

As mentioned in section 3.1.5, a GF grammar can include the whole hierarchy
of an ontology. This kind of information is indispensable for any system that
operates between text and the world. However, in machine translation, where
the task is to provide a mapping from text to text, the question is reduced
to finding the information that is enough to prevent erroneous translations.
The practical question is how to implement it: the ontological information
can be hard-coded into GF grammar, or ontologies can be used as an external
source, accessed only when ambiguity is found. Another possibility is to leave
the final decision to a human, but provide a disambiguation grammar, which
gives explicit translations for words whose meaning is more broad in the source
language than in the target language.

4.1.1 Integration to GF grammar

In the context of GF, an expression is ambiguous if it has more than one
abstract syntax tree. The intuition of a human speaker or a reasoning system
is irrelevant; an ambiguous sentence like I made her duck has only one abstract
syntax tree in a grammar that has only one sense of the word duck or her, or
only one type of complement for the verb make. It depends of course on the
grammar in question if an expression is ambiguous, and there is no sure way
of automatically solving if a grammar has ambiguous linearisations in some of
its concrete syntaxes.

Homonymy in the level of atomic lexical items is not hard to detect: if any
two abstract syntax lexical functions have identical linearisations in a proper
subset6 of all languages, there is a possibility of ambiguity when translating
to languages in which the two concepts are not homonymous. If the two
elements belong to the same abstract syntax category, that is, they could
be interchanged in a sentence without modifying the nonterminal nodes in
its abstract syntax tree, the potential ambiguity is of a lexical sort. If the
two elements with identical linearisations belong to different abstract syntax

6If the linearisations of the two elements are identical in all languages in the system, none
of the languages would be ambiguous in relation to others, so from an MT perspective, there
is no problem.
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categories, it might cause syntactic ambiguity, given the right combination of
other polysemous or homonymous constituents.

Domain-specificity makes the task easier; it is really a contrived example
to assume that both bass singers and bass fish appear in the same grammar in
exactly same kinds of contexts. In a domain-specific system, more likely source
of ambiguity is syntax. Lexical ambiguity tends towards polysemy; it is more
about fine distinctions where different languages draw a line differently. Au-
thentic examples from the case studies include the painter-subject distinction
discussed in section 3.1.5, and from the same corpus, another preposition på
can be used to express both that an artwork is painted on some base, such as
canvas, or that the artwork is located in some place, such as museum—similar
to English on: painting (hanging) on the wall or painting (painted) on canvas.
A polysemous example from the domain of mathematics would be the modifier
even: there are even distributions (’balanced’) and even numbers (’divisible
by two’)7, both meanings very common.

The key to this approach of disambiguation is the GF type system and its
control over legal combinations; it is a syntax error to give an element of one
abstract type to a function that requires an argument of some other abstract
type. In case of ambiguous structures, the constituents can be marked so that
only one parse is possible. As shown in section 3.1.5, we can separate painters
from subjects and bases from places by giving them different abstract syntax
types. Using dependent types and proof objects helps fine-tuning the grammar
and separates syntactic well-formedness from semantics. The dependent types
make it possible to distinguish the most minute details if needed, and they can
be modified without having to refactor the rest of the grammar.

Of course this solution is still not perfect, since a painter can be also a
model, and a wall could be either a location of a painting or its base. The hard-
coding of the ontological information to GF has its limitations: if the context is
not specified in the immediate constituent where the ambiguous term appears,
the extra information provided by the type system does not help. A contrived
example: I went to the bank could mean either the monetary institution or the
river edge, only disambiguated by whether the sentence continues and withdrew
200 euros from my account or and walked along the river. In the grammar, the
scope of the function that handles the argument bank would not include any

7And by polysemous extension, even polygons (’number of sides is divisible by two’)
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continuing clause. While it is technically possible to do ontological reasoning
in GF type system (see page 26), currently that is not fast enough to be a
feasible option (Angelov 2011: personal communication).

4.1.2 Ontology as an external source

Another possibility is not to integrate the ontology to GF at all, but use an
external ontology and a reasoner. There has been research on using semantics
as grammar rule constraints (see section 5), however, GF has not been used.
As there is no practical research done, the whole idea stays very abstract. The
basic idea is to have the GF grammar in a format that could be given to a rea-
soner that uses semantic constraints to filter infeasible interpretations. When
encountering an ambiguous parse, all abstract syntax trees for the sentence
are extracted and given to the engine for filtering.

If a text is parsed by a GF grammar, we already have semantic represen-
tations for the words in the abstract syntax. If this step becomes relevant, it
means that some part of the sentence gives possibility of two or more parses.
The previous method relies on detecting and solving ambiguities beforehand;
the user could go through a lot of trouble over something that never occurs
in any real life situation. This approach does not declare any combination as
strictly illegal, but in a competition against a more semantically sound parse,
a semantically weird interpretation would lose. If the semantically weird parse
is the only parse, it depends on the priority of the user what to do; if the goal
is just to prevent ambiguity, the whole process of ontology check need not be
done if GF returns only one parse.

For this approach to be useful, the grammar would need to be well designed
with respect to the abstract syntax types. The GF implementation would
not need full information about the taxonomy of its lexicon, but the abstract
syntax types need to be chosen well enough that when given to an ontology-
based reasoner, the types would correspond to the items in the ontology, so
that any reasoning can happen.
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4.1.3 Human-aided disambiguation

The distinctions in deictic expressions, such as personal pronouns, is another
issue, which is not solved by domain-specificity. Suppose the source language
is English and the input sentence I love you. We could get various translations
in different languages, showing variations according to gender and familiarity
of the participants. The variation can show in the choice of pronouns, in the
inflection of the verb or in both of them. Without any additional information,
a monolingual English speaker would not know which translation to choose.

Instead of making the program decide, we could write one more concrete
syntax, a disambiguation English, or whichever is the grammar writer’s lan-
guage of choice. Its lexicon would be identical to the regular English, except
for the homonymous terms, which would include explanations in parenthe-
ses. In the example sentence, personal pronouns cause ambiguity when trans-
lating from English to e.g. Spanish or German. The abstract syntax of the
grammar would have terms like I_Female and I_Male, you_SgPoliteFemale,
you_PlFamiliarMale etc. The English linearisations for those are just I and
you, but disambiguation English would state explicitly I (female), you (singu-
lar, familiar, male). This way, when one phrase in English gets many transla-
tions in some language, all translations would be accompanied by the disam-
biguation English translations.

A disambiguation grammar can be done for every language, and disam-
biguations can be shown in the language from which the user is translating.
In different languages different terms would need disambiguation. Coming up
with informative glosses can be hard, but there are resources: the glosses could
be extracted from WordNet, provided that the language has one. In WordNet
(see section 3.4), the words are arranged in synonym sets, and each set is given
a description of its meaning. The descriptions are relatively short, but detailed
enough to disambiguate meanings. An example of the results for the adjective
even:

The adj even has 6 senses

1. even — (divisible by two)

2. even, fifty-fifty — (equal in degree or extent or amount; or
equally matched or balanced)
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3. even — (being level or straight or regular and without varia-
tion as e.g. in shape or texture; or being in the same plane or
at the same height as something else (i.e. even with))

4. even, regular — (symmetrically arranged)

5. even, regular — (occurring at fixed intervals)

6. tied, even, level — (of the score in a contest)

A human has to choose the right explanations—a mathematics grammar
would need at least the first two kinds of even, but WordNet has six different
options. Even if there were only two senses for the word, it would be still
hard to automate the decision of which one is which. However, it could be still
useful to have WordNet as a resource; choosing from a list of descriptions is
less work than to design good descriptions from scratch. If glosses in natural
language are not available or they prove too clumsy, the description can be
just a more specific subclass, for example even (arithmetics), even (geometry)
and even (statistics).

An important question is how much does an ontology really help. An
ontology can provide information of the taxonomy of a concept, but generally
only a human knows which distinctions are important in a grammar. For
example, a painting base and a location could be separated from each other
in many ways, all relatively easily extracted from the ontology, but most of
them are not very useful. However, when designing the grammar structure, it
might be helpful to model it in accordance with an ontology: all approaches on
disambiguation, whether it happens within the GF grammar, by an external
ontology or aided by human, assume or at least benefit from a coherent, well-
structured abstract syntax that is compatible with the ontology.

4.2 Ontology as the source of lexicon

Potential ambiguity of the translatable input is not our only concern. We want
to give the users a chance to modify the lexicon of a translation system, even
for languages they might not know well or at all. One use case, as presented in
the introduction, is to search from the ontology terms that are similar to the
search key, and get a set of related concepts and their translations. Ontology
can be used at any point or by anyone: a grammar writer at the development
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stage, or a user who wants to extend the vocabulary of a grammar already in
use.

This method of acquiring the lexicon would not require any further dis-
ambiguation, since the terms are chosen by their meanings to start with. A
situation with only one even in a mathematics grammar could happen if the
lexicon is designed with focus on words. A more systematic method would be
to harvest terms on different subdomains. Even though all evens are already
domain-specific terms, in the domain of mathematics, they can still be divided
into smaller subdomains: arithmetics, geometry and statistics. If the lexicon
is harvested from a mathematical ontology, with the idea to get all concepts
belonging to a certain category, then one even enters the lexicon along with
other terms in arithmetics and another when fetching all terms in statistics.

The method is best suited for finding nouns. If we think about the struc-
ture of an ontology, subjects and objects of a relation are usually nouns. Pred-
icates include some verbs or verb phrases (e.g. holds_account), but often
they are relational nouns or adjectives, possibly combined with verbs such as
is or has, or passive verbs (e.g. funded_by). Even if there are some verbs,
often predicates do not have a very detailed hierarchy; superclass of all prop-
erties is Property, with subclasses such as Object property or Datatype

property. For a predicate such as flows_through, there most likely would be
no intermediate superclass related to movement, it would be just some kind of
property.

Another practical issue is how to access the information. There are ontol-
ogy query languages, such as SPARQL, for making structured queries. Let us
look at an example query that returns all painters whose paintings are in Lou-
vre. First it searches all triples where http://dbpedia.org/property/museum
is a predicate and http://dbpedia.org/resource/Louvre is an object. Then,
for each subject found in previous stage, it finds all triples in which that item
is the subject and http://dbpedia.org/property/artist is the predicate,
and returns the object of that query. The final result consists of only artists
of the paintings.

However, ontology query languages have relatively high learning curve,
and we should not expect grammar writers and translators to be experts on
query languages. We consider two options for accessing the ontology: a full
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natural language query that gets translated into a query language, or a pre-
constructed query that the user completes with keywords.

4.2.1 Natural language queries

The idea of natural language queries is that the user can write a specific query
in natural language, and it is translated into an equivalent expression in an on-
tology query language. For example, give me the names of all paintings whose
artist is named Rembrandt would construct a SPARQL query that matches
those items who appear in triples with predicate artist and object is named
Rembrandt, and returns only the names of the paintings. The example query
is shown in program 9. Everything starting with a ? is a variable, everything
between <> is a URI and quoted text is a string literal, only possible as an
object of a triple.

Program 9 A SPARQL query that returns all paintings by Rembrandt
SELECT ?paintingName

WHERE {

?painter <http://dbpedia.org/property/name> "Rembrandt" .

?painting <http://dbpedia.org/property/artist> ?painter .

?painting <http://dbpedia.org/property/name> ?paintingName

}

The conversion from a natural language expression to a SPARQL query is
not trivial. As for technical minimum requirements, we need a mapping from
natural language expressions to the items in the ontology, and a syntactic
parser to figure out the relations; that is, what is their position in the triples.
Same construction in natural language can correspond to many predicates in
ontology, depending on the domain, and same predicate can be expressed with
many natural language utterances. Our example query could be phrased the
names of all paintings painted by Rembrandt or even all Rembrandt paintings,
leaving the name part implicit and omitting the painter–paintee relation from
Rembrandt and the paintings, just using the apposition Rembrandt painting.

In order for a natural language query to be feasible, it should be able to
convert any type of query into query language, otherwise it would be easier just
to stick to pre-constructed queries (section 4.2.2) and explain the limitations to
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the user. It should also allow lots of freedom in phrasing the query; otherwise
it would be just another restricted syntax, and it might be more motivating
simply to learn the query language.

Previous approaches to natural language queries for ontologies include
projects such as Wang et al. (2007), an all-purpose ontology NL interface that
uses statistical parsing and synonym search in order to cover a wide range
of expressions. Wang et al. use examples such as which is the longest river
that flows through the states neighboring Mississippi—to parse and answer that
kind of question, the system needs to connect a lot of information. Considering
that these queries can be phrased in different ways, the parser has to be very
robust.

Figure 4: Ontotext’s natural language query for pharmaceutical patent ontology

Another direction is to limit the natural language queries to specific on-
tologies. Figure 4 shows Ontotext’s natural language query for an ontology of
pharmaceutical patents. Since the ontology contains only very specific infor-
mation, it is possible to get a good coverage of potential queries. In the spirit
of MOLTO, the natural language interface is done with a GF grammar that
recognises multiple variants to phrase the queries. The abstract syntax trees
are then transformed into SPARQL queries, and the results of the query are
transformed to GF abstract syntax trees and linearised, so the output of the
query is also natural language. Using a GF grammar makes it easy to create
more concrete syntaxes in different languages. GF also provides incremental
parsing: as the user types, the editor parses the text and suggests possible
words, and prevents the user from typing non-recognised content.

40



There have been usability studies comparing different natural language
querying systems. The results found by Kaufmann and Bernstein (2010) show
that the users did best with systems that accept many variations in phrasing
the questions. The most restrictive systems got bad results, both in user
evaluations and in the time they spent doing the tasks.

Even if the problems with restrictiveness were worked out, either by very
robust parsing or enough specialisation, the question is whether a full natural
language query is suitable for term harvesting. The use cases hardly need
very detailed specifications, such as the example with the longest river by
Wang et al. We have much more restricted use of the ontology. Of course an
option would be to develop natural language queries designed especially for
term harvesting—that would allow more complex restrictions, and the results
would be lists of words, not even trying to answer specific questions.

4.2.2 Keyword matching

A compromise between full natural language query and plain keyword search is
to create a query template, and have the user insert relevant words into it. The
core of the query consists of different isA and isNamed relations in the ontology.
Entries from different sources use different predicates, but the overall structure
of the ontology is coherent and predictable; the relation between salmon and
(edible) fish is the same as with mononucleosis and (viral) disease. As the
idea is to harvest terms and not answer questions such as what is the largest
mammal in Africa, a pre-constructed query should satisfy most of the users’
needs.

The technical side is very simple. If we know the name or a part of the
name, we can search for a name relation in which it appears as the object.
The subject of that relation is a URI that we can then use to get the term’s
superclass, and as a final result, search for everything belonging to that super-
class. Of course this depends on the ontology’s labelling system—some systems
have a rich representation system for names, including morphology and syntax,
and some have a simple key predicate with a string as an object. A former
type of labelling needs a more complex query, since the names themselves are
resources and not just literals. For an expert use, a thorough naming model
would be desirable: it would include more structure and variation, alternatives
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and synonyms, and the user could refine the search to include linguistic details.
The latter kind of structure is simpler and more common; the ontologies in
FactForge all use the model with a label or key predicate, sometimes with
multiple options. Program 10 shows a query for this kind of labelling model.

Program 10 A pre-constructed query
SELECT ?termName

WHERE {

?givenTerm <isNamed> "Name given by the user" .

?givenTerm <isA> ?superclass .

?wantedTerm <isA> ?superclass .

?wantedTerm <isNamed> ?termName

}

The workflow is such that the user types a word, which is either a su-
perclass of the kind of concepts she wants, or a similar word. For example,
if searching for edible fish, she can type Seafood or Salmon. In first case, the
tool constructs a query that returns the names of the entities that have the
superclass Seafood. In second case, the tool first searches for the superclasses
of salmon, asking the user to specify if needed, and returns the names of the
entities belonging to the same superclass. The user can specify in which lan-
guages she wants results, and if some term is not found in one of the languages,
the program can substitute the term with its superclass: if there is no Catalan
translation for salmon in the ontology, instead of leaving the entry blank, it is
replaced by the nearest superclass that has a Catalan translation.

A user with no skills in query languages would benefit from a way of
searching with just words, but for an experienced user, pre-constructing a
query limits the options. For example, someone might want to search for the
names of all paintings whose genre is postmodernism. This would not work in
the previously described model, because an art genre is not the superclass of
the painting, it is a predicate with no use outside of art domain. Foreseeing
all possible things that a user would like to use to harvest vocabulary is hard,
same way as it is with a full natural language query, so the translator’s editor
should make it possible to write SPARQL directly or from TermFactory’s query
form. The results, from keyword matching or native SPARQL query, can be
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Figure 5: Query user interface

then added to TermFactory and converted to GF format, either with TF as a
bridge or directly from FactForge.

4.2.3 Converting the results into a GF grammar

Converting the results into a GF grammar is the most practical phase in the
process. The part of deciding what type of query to use is not obvious; different
approaches have their good and bad sides, and there is no single best solution
for all situations. However, in this part we assume that the user has done a
query and got results, and the next step is to add them to a GF grammar.
Ideally the harvested terms would go to TermFactory for revision and addi-
tional details, and the conversion to GF would happen from TF; this process
is described in section 4.4. However, if the user wants to add terms to a GF
grammar immediately, it should be possible.

In order not to break any existing file, it would be best to create a new
lexicon module for each term harvesting session and import them into the main
GF lexicon. We get the abstract syntax function name automatically: if the
URI is http://dbpedia.org/resource/Patagonian_toothfish, we just get
the name part after the last slash, Patagonian_toothfish. If there are non-
ASCII characters in URIs (in which case they are actually IRIs), they should
be mapped in a way that does not lose information; for instance ä with a’

or ae, depending on the convention. The only nontrivial part is to decide the
abstract syntax type of the harvested terms. One option is to ask the user, or
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for a scenario where the user needs absolutely no knowledge of GF, the whole
search can be connected to an existing grammar. The example used in the
search must be something already in the grammar, and everything found by
the search will share the example term’s abstract syntax type. If the example
term is not in the grammar, something returned by the query in some language
might be, and the editor could check that. A worst case scenario could be just
to add a placeholder type—either use an invariable dummy or choose one of
the types that are in use in the grammar—and warn the user.

Generating the concrete syntax is a similar task. Assuming that the query
has found a correct abstract syntax type for the new terms, for example Fish,
they are given the same type in concrete syntax as other fish. If the abstract
syntax type is not found, the concrete syntax type should also be just a place-
holder. At least the structure of the file can be generated automatically, so
that all material that the grammar writer needs is already in place.

To continue the example, we assume that the type is not a problem. The
term Patagonian toothfish needs to be added in 4 languages: German, Polish,
French and English.

de : Schwarzer Seehecht

pl : Antar patagoński

fr : Légine australe

en : Patagonian toothfish

The editor can generate for each of them a concrete syntax: FishGer.gf,
FishPol.gf, FishFre.gf and FishEng.gf. A good concrete syntax category
for nouns is CN instead of the lexical category N (Hallgren et al., 2012, p.
31), so that should be their type. Single words can be converted into GF
common nouns just by writing mkCN (mkN "word"), but multi-word concepts
are harder. For example, in Polish and French the toothfish is the first word,
but in English and German it is the second. Good guesses like mkCN (mkA

"Patagonian") (mkN "toothfish") do not work for all languages. A safe
choice is just mkCN (mkN ["any sequence of words"]), and an expert in
that language can later on check the grammar and do corrections when needed.
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4.3 Ontology as the (source of) grammar

The distinction between an ontology-based grammar and the previous two
approaches is in the degree of ontology use. When using ontology for disam-
biguation or as the source of lexicon, the process of grammar writing is not
guided by the ontology as such. The user decides what kind of expressions are
supported by the grammar, and may use an ontology to get ideas what kind
of categories should be included, but ultimately the grammar is built with the
idea of translating text to text.

With the ontology as the grammar, the idea is to eliminate the parsing
phase, and generate sentences by verbalising the ontology. This is not machine
translation, but multilingual natural language generation. The system does
not need to prepare for unrestricted vocabulary, and user input, if there is
any, comes in the form of a query, not as a source text to be translated. We
include this approach in the study, because the methods of building this kind
of system do not differ from building a translation system: the GF grammar
is similar, but it is not used for parsing, only for linearisation.

4.3.1 Ontology verbalisation

As introduced in section 2.2, the information in an ontology is organised in
triples, each presenting one fact, and verbalising them directly would result in
clumsy sentences. If the goal is just to provide a natural language translation
to browse the ontology, this might be enough. However, in order to produce
fluent passages of text, the process must involve information aggregation and
discourse planning.

The museum case study in MOLTO uses the latter kind of ontology verbal-
isation. We have the Gothenburg City Museum’s ontology of their collections,
and the objective is to generate automatically various types of descriptions,
such as leaflets, web pages and interactive applications, where the user can
search information via directed or natural language queries (Dannélls, 2011).
The platform for querying or browsing could also be a semantic multilingual
wiki developed in another work package of MOLTO; more on that in sec-
tion 4.3.2, where we discuss user input.
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Each format requires a different kind of information structure and details.
The technical implementation is a GF grammar (Dannélls et al., 2012) with
dependent types (section 3.1.5) to guarantee compatibility with the ontology.
The grammar is structured in two parts: lexicon and text patterns. In the ab-
stract syntax there is in addition a database of proof objects for each painting,
to make sure that only existing combinations of data are linearised. The first
excerpt in program 11 is from the Swedish concrete syntax of the lexicon, and
it is a linearisation of a painting. The second one is the proof object which
asserts the properties of the painting. The painting GSM940042Obj can then
be used by different kinds of discourse building functions.

Program 11 Linearisation of a painting and a proof object
lin GSM940042Obj = mkPainting "Peter Ulrik Ekström";

data GSM940042ObjPainting : CompletePainting

GSM940042Obj MiniaturePortrait JKFViertel (MkYear (YInt 1814))

(MkMuseum GoteborgsCityMuseum) (MkColour Grey)

(MkSize (SIntInt 349 776)) (MkMaterial Wood) ;

There are no linearisations in the concrete syntax for the database; ele-
ments such as Grey, Wood and MiniaturePortrait are linearised in the lexi-
cons of each language, and the database is just for creating valid combinations.
Furthermore, porting the GF grammar to a new language does not require
touching the proof objects. Only if new paintings are added to the lexicon,
one has to make corresponding proof objects for them.

The discourse building functions in the concrete syntax take different ar-
guments and expose the information in different ways. For instance, the au-
thor of a painting is one of its key elements, so it would appear in nearly all
discourse patterns. Details such as colour and size are less important for a gen-
eral description about the painting—then again, for a direct question about
the painting’s size, the user would not need its author and art genre in the
same response. The choice of what information to include is a question of a
communicative need, but the order of the information and other grammatical
aspects vary between languages: for example, in English it is natural to use a
passive when describing that a painting is painted by an author, and in Finnish
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it sounds more natural to use an active construction with an inverted word
order.

Could the text generation be more general? A short pattern such as
Painting was painted by Painter in Year. It is of Size [Width by Heigth] and
it is painted on Material. This PaintingType is displayed in Museum. shares a
common information structure with any description, for example Artefact was
developed by Manufacturer in Year. It measures Size [Length m and Weight kg]
and it is made of Material. This ArtefactType is displayed in Museum. From
a technical point of view, it is possible to abstract away the common parts
of the text generation templates as an incomplete module, and instantiate a
text generation template for art museum by using the verb paint and for a war
museum by using the verb manufacture.

This kind of parametrised text template goes well with the grammar de-
sign of base module and domain extensions; see e.g. Hallgren et al. (2012). A
base module Museum would contain categories, predication functions and user-
friendly constructors. Domain extensions ArtMuseum and WarMuseum would
each contain a domain specific lexicon, easily extendable by an end user.
As a minor technical annoyance, the module structure would become more
complex—in the current model, in order to create a new language in the art
museum ontology, only two real modules and a three-line dummy wrapper need
to be written for each. The benefit in the parametrised template model is that
once someone has written a generic template for descriptions, one can use that
for different types of museums only by changing lexicon (paint/manufacture)
and some domain-specific details such as size units: a painting is described by
two dimensions, whereas a tank needs three dimensions and a weight.

However, it is important to consider whether different domains are really
compatible, especially when moving away from toy examples. We have at-
tributes like material and colour; for a painting it is natural to mention them
even in the first sentence, e.g. Mona Lisa was painted on canvas by Leonardo
in 1503, but a description such as Leopard 2 was produced using metal and
plastic by Krauss-Maffei in 1979 does not sound natural. Especially for longer
texts with more details, it would be difficult to create interchangeable discourse
patterns. A more realistic use case would be items within the same domain
that have only minor lexical differences. For example, paintings and sculptures
would have enough in common to use the same discourse patterns, but differ-
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ent word choices, like painter and sculptor. Dannélls (2011, p. 5–6) refers to
Chenhall and Vance (2010), who find that the core metadata is similar in mu-
seum records from various domains, and implements the design of the painting
ontology accordingly. Nevertheless, it is probable that these basic attributes,
such as object name, origin, value, creator and location, would not even need
different verbalisation parameters in different domains. Thus it remains to be
seen how much a need there is for a solution like this.

We return to ontology verbalisation in section 4.4.2. Rather than differ-
ent domains using the same generic text generation template, we will discuss
different ontologies of the same domain using the same verbalisation grammar
with the help of TermFactory, using ontology alignment.

4.3.2 User input

The question of the user input in the museum case has not been discussed very
much. The generation of leaflets and web pages is straightforward; the respon-
sibility is with the grammar writer, who decides what type of information is
crucial, and then the chosen discourse patterns are applied to all paintings.
This is a typical MOLTO workflow, as defined in 2.3: the initial effort is to
decide the information structure, and the text is generated automatically in
many languages. The grammar is not different from any other grammar, only
the units in the abstract syntax are complete paragraphs instead of single
sentences that can be combined in any way. If a new piece is added to the
collection, a similar text about it can be generated instantly. This is analo-
gous to the case where a website is updated in one language and the update
is simultaneously translated into other languages. In this scenario the source
is not written in a natural language, instead the text comes from applying the
chosen pattern to an ontology record.

The planned interactive applications are not that straightforward. In the
following paragraphs we will see three methods of querying the ontology: free
natural language query, guided natural language query and a semantic wiki.

Free natural language query In section 4.2.1 we discussed ontology queries
as a means of acquiring lexicon; this is a similar problem, but with different
ends. The user would type a query about museum objects in natural language
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and get a response in natural language, built with the discourse patterns pre-
sented in 4.3.1. This means two grammars: one for the text patterns and
another for the query. However, the query grammar would most likely be eas-
ier to make than the discourse pattern grammar or any generic query grammar.
The domain is limited and the vocabulary is restricted; the problem of one-
to-many (painting painted by Rembrandt and Rembrandt painting) still exists,
but at least the apposition Rembrandt painting would not refer to a movie
directed by Rembrandt, a book written by Rembrandt or a course taught by
Rembrandt—that is, we can expect to get rid of most cases of many-to-many
relations. There are still many ways to say that someone is the author of a
painting, but with a restricted domain, we can expect that each of those natu-
ral language expressions refers to only one relation in the ontology. Otherwise,
the pros and cons of a natural language query have been discussed in 4.2.1.

Directed natural language query Like the previous method, the result
of this one will be a natural language query, but the process of formulating
the query is guided. The guidance can be provided at a semantic or syntactic
level. A technique called conceptual authoring or WYSIWYM, “What You
See Is What You Meant”, is an example of the former. Figure 8 shows an
example of a conceptual authoring UI to a tourist phrasebook, written by
Michal Boleslav Měchura.

The image is the first view of the phrasebook. The phrases are grouped
by meaning, and one phrase can belong to more than one class: expressing
that someone wants to go somewhere is under two titles, wants and places.
After choosing one of the broad scenarios, the user needs to fill the details: for
example, someone wanting something requires information of who wants and
what. Besides semantic valency, there are grammatical details, such as degree
of politeness, number, gender and definiteness of the arguments and whether
the action is a statement or a question.

The generation of a WYSIWYM interface is not a trivial task; however, the
grammar itself could be used to semi-automate the construction of the inter-
face. The action categories in the WYSIWYM Phrasebook all come from the
functions in the abstract syntax: AWant : Person -> Object -> Action

becomes someone wants something. A grammar used with a WYSIWYM in-
terface would need a generic indefinite member of all participants—someone
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Figure 6: Tourist phrasebook: WYSIWYM

for Person, something for Object, somewhere for Place—which would be used
when generating a template of an action. The platform, for instance a web page
or a mobile application, would be reusable with any grammar. In addition, a
start category for a top level action in WYSIWYM version would be specified
in the grammar; in Phrasebook it is Action. Then the WYSIWYM editor
would create generic sentences out of all Action-producing functions and use
them as models in the first view. Human effort is required in the grouping and
naming of the example sentences; for example, deciding that someone loves
someone belongs to the category Relationships. To add multilinguality, the
platform needs to be translated for each language, but the model sentences for
a given grammar can be generated for any concrete syntax of that grammar.

Hallett et al. (2007) have tested a conceptual authoring tool for compos-
ing questions for a database of medical histories. The subjects succeeded in
composing fairly complex queries, such as How many patients between 30 and
70 years of age, who had a clinical diagnosis of malignant neoplasm of breast
and underwent surgery, had a haematoma after surgery? with the help of the
tool. As a result, the program gets an unambiguous representation without
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the need for a parsing and semantic interpretation, and the user can still see
the query in natural language, so that it is easy to check whether it matches
with the intended meaning. The forming of the question is guided by the pro-
gram, and the result is a controlled language, but the user does not have the
responsibility to learn the rules of the language.

Figure 7: Tourist phrasebook: fridge magnets

Figure 7 shows an example of directing a sentence at a syntactic level, in
the style of fridge magnets. For the same phrasebook application, there are 107
possible first words for a sentence in English, as opposed to 8 possible action
types. For a language that has more inflection, the number rises quickly: the
Bulgarian version has 369 possible first words, because the grammar allows
variation in grammatical details. In the WYSIWYM approach, those details
are defined only after the basic meaning has been chosen.

Using a fridge magnet user interface is reasonable for small applications,
where the languageis very restricted, and the fridge magnets are an option to
completely free typing. A slightly modified version of the fridge magnets would
classify the words such that the user would be shown only content words and
start building the sentence from the middle. For instance, choosing cost or
toilet for the keyword would limit the options to the kinds of sentences where
those words can appear; the first one would be demanding or negotiating a price
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of something and the second one probably asking for a location of a bathroom.
In practice, the solution is not applicable: fridge magnets get potential next
words by using the GF parser, which cannot start from the middle of a sentence
(Angelov, 2009).

A predictive editor is another option to guide the user at the syntactic
level: when the user starts typing, the editor shows possible completions and
gives feedback instantly, if the word or expression is not recognised by the
grammar. Conceptual authoring is an option to consider for a system that is
too small to support free text, but large enough that the fridge magnets or
predictive editors are impractical.

Semantic wiki AceWiki, presented in Kuhn (2008), is a semantic wiki that
works on Attempto Controlled English (ACE). An introduction to ACE can
be found in Kuhn (2010, ch. 2.2). The plan in MOLTO is to make AceWiki
support multilingual GF grammars; see Camilleri et al. (2012).

The semantic wiki contains the statements from the ontology as natural
language sentences. In addition to explicit statements, AceWiki does inference,
such that statements every painter is an artist and Claude Monet is a painter
result to Monet being an artist. ACE statements can be more complex than
one ontology triple; for example Mona Lisa is an oil painting that is painted
by Leonardo da Vinci and that is located in the Louvre. This aggregated state-
ment is broken down to simple statements by the ACE parser (Kuhn, 2010),
so information can be added to an ontology, even though it is not directly
translatable to RDF. A common use case, anticipated by the developers of the
wiki (Kuhn, 2010) is to make users add statements to the wiki, and all new
information that is well-formed and consistent with the old is added to the
ontology.

In this scenario, the museum ontology would have its own AceWiki, con-
taining statements that are verbalised from the ontology. The previously in-
troduced GF grammar for museum texts can not be used by the wiki, because
everything on AceWiki has to be written in ACE. However, the ACE gram-
mar library (Camilleri et al., 2012) supports AceWiki subset of ACE in 10
languages; all relevant ACE constructions are covered, and the extension to
museum domain is purely lexical.
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The wiki approach makes discourse planning unnecessary; an article is just
an aggregation of the information stated and inferred on the topic. Information
can be given priorities based on common tendencies, for example, a collection
of statements about a painting would include its author in the first sentences
and its colour as secondary information.

Figure 8: Information representation in AceWiki

In effect, a semantic wiki is a way to browse an ontology—and extend it by
using controlled natural language that is readable by a reasoner. If there are
inconsistencies, they are shown as conflicting and not added to the underlying
ontology. As for querying, the AceWiki supports questions, such as in the
image “What is painted by Leonardo da Vinci?” and when new information
is added anywhere on the wiki, the answers are updated instantly to the page
where the question is written.

GF will be used to make the wiki multilingual. The scenario is back to
the original: a GF grammar is used to translate statements that a human
writes manually or semi-automatically based on the ontology. Furthermore,
the statements are translated to ACE, which is a formal language. The users
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can actually extend an ontology by writing controlled natural language, mul-
tilingually.

4.4 Role of TermFactory

In section 4.2.3 we saw a quick and ad hoc way to transform the informa-
tion from FactForge to GF grammars. A preferable option would be to use
TermFactory as a bridge between the two, or later, even as the primary source
for terms. The scenario in 4.2.3 assumes an ontology with a primitive labelling
system—if the term Patagonian toothfish were already structured data, with
information that toothfish is the head of the noun phrase, we could just import
the terms to GF directly from the ontology. The philosophy of TermFactory
and similar approaches (such as Cimiano et al. (2011), presented in section 5)
is to make the step from ontology to natural language smaller.

It is good to preserve a simple key predicate with a string object; prefer-
ably with lot of options, so that finding the term with a keyword search would
still be possible. In addition, the terms should be linked to a linguistically
detailed representation without replacing the keyword relation. This can be
done on the TF platform.

4.4.1 Linking ontology entries to morphological resources

In the MOLTO scenario, the terms are harvested from FactForge, or from
any source, and carried to TermFactory, where a community of users revises
them and adds all kinds of linguistic details needed in NLP applications. In
a language with rich morphology, the information found in FactForge is not
enough. Adding the details immediately after retrieving is a lot of work for
one person, and if everyone does it that way, it is probable that people end up
doing work that someone else has already done at some point. In addition, a
term search does not provide a lot of help for filling in the information; it is
specialised knowledge to know what is for instance a conditional or a gerund.
As said in 4.2.3, it is not trivial even for a linguist to know what information
a GF resource grammar constructor requires in order to build words.

The sensible first step is to make use of all existing resources: for example,
synonym lists, frequency lists and morphologically annotated word lists that

54



are freely available for several languages. Before asking the user to provide
morphological information, the word should be searched from an existing mor-
phological lexicon. This solution requires mapping the classification system
used by the lexicon to GF morphology; in practice, that should not be too
hard, if the resource grammar morphology is made in a sensible way. A con-
version for Finnish word list8 (for Finnish Languages) has been already done by
Aarne Ranta. The work is to map the inflection types of the list, represented
by a number from 1-78 and an optional letter from A-M, to the functions in
the Finnish resource grammar, represented by example words. Program 12
shows an excerpt from the conversion grammar.

Program 12 Mapping the inflection types used by the Finnish word list to
GF smart paradigms
oper

d06 : Str -> NForms

= \s -> dTohtori s ;

d07 : Str -> NForms

= \s -> dArpi s (init s + "en") ;

d07A : Str -> NForms

= \s -> dArpi s (init (weakGrade s) + "en") ;

However, there might be no resources available for some language, and
the platform should be prepared for words that are not covered by any of the
existing resources. For that reason, the TermFactory entry editor has an input
template that lets the user give the information in an easy way, providing
examples. GF could be used as a back-end for the morphology. The GF
resource grammar constructors take in general from 1 to 5 forms of a word to
form a complete paradigm; worst cases are around 10 and very rare.

A user interface would ask the user to write a basic form, typically nom-
inative or infinitive, possibly using an example and an advice to write the
entry word in the same form. The underlying GF web service would then run
a mkN, mkV or similar and generate the whole paradigm. For highly inflect-
ing languages it would show only some key forms. The user would correct
what needs to be corrected and then accept the paradigm. In case there is

8http://kaino.kotus.fi/sanat/nykysuomi/
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nothing to correct, the way to construct that word in GF would be just mkC
<word>. The smart paradigms in GF constructors have an order of what forms
to include; for instance, a Finnish noun constructor with two forms takes the
singular nominative and the plural partitive, so those would be the first forms
to show to the user. When that is accepted, with or without correction, the
user could be shown the next form, singular genitive. After 4 forms there is
only the worst case constructor, 10 forms, and if all are accepted, then the
paradigm of the word is saved to the entry.

TermFactory is meant to be compatible with all kinds of NLP applications,
not just GF. It is relatively easy to get any kinds of representation formats
from the full paradigm; especially if there is a mapping from some existing
morphological resource to GF, it could be at least partially two-way. The GF
format would be the mkC constructor taking the forms that the user wrote or
corrected. Even if this kind of minimal constructions were not created, the
words could be built with the worst-case constructors, which always have fixed
forms.

Ideally, TermFactory would grow and include terms from many sources, so
that the user could search terms straight from TermFactory. The search might
be implemented as a single query that searches FactForge and TermFactory at
the same time, and if some or all of the terms found in FactForge already have
a TermFactory entry, the query would return that information as well. The
pre-constructed query is currently made to work in FactForge, but in future it
could be updated to cover also terms that have come to TermFactory elsewhere
and not interlinked in FactForce collection. The native SPARQL query would
of course work for any data.

4.4.2 Ontology alignment

Ontologies can be mapped to other ontologies. If one ontology has a mapping
to some NLP resource, it is easier to map other ontologies to it than write such
a resource to all of them. For instance, SUMO has a mapping to WordNet;
linking any other ontology to SUMO gives that ontology an access to a network
of natural language concepts.

The two ontologies can be merged into one, such that the contents of on-
tology A are rewritten in ontology B’s terms. This can be done manually or
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(semi-)automatically. This option is good if the development of A is not con-
tinued; having only one ontology takes less space and is simpler than bridging
two ontologies.

If the ontologies need to be kept as distinct, they cannot be merged.
Instead, the contents of A can be mapped to B with sameAs predicates. This
is the most practical solution if the ontologies are distinct entities, so that B’s
developers need not care or even know about A. TermFactory supports having
third-party ontologies with read-only access; the links from the user’s own
ontology to the third-party ontology are defined on TF, visible in the scope
that the user wishes.

As a technical issue, two ontologies are not always easily mapped. A
property in one ontology might best map to a union of two or more properties in
another ontology, or it might have no equivalent at all. Some correspondencies
depend on application, and require a human to decide. If a painting ontology
has a verbalisation grammar and a music ontology is mapped to it, probably
the verbalisation is not suitable for musical pieces in all aspects. For example,
a song does not have a physical size, but it has a duration (a recording) or
an estimated duration (a score)—should that be mapped to a size attribute?
In 4.3.1, we discussed a parametrised verbalisation grammar, for domains with
similar information structure but different lexical choices. This could provide
a solution, but it has not been tested in more than a toy scale. However, if
it turns out to be useful in some applications, TF and GF provide all that is
needed to implement such a system.

4.5 Testing and evaluation

Currently we have a prototype of the search tool that works with the ontology,
and connecting the ontology search to the editor is the next step. TermFactory
has only recently (June 2012) been opened, and it does not yet have a user
base needed for it to function as planned. The whole package is not at a point
where it could be reasonably tested, but meanwhile we can test the individual
components and plan how to test the first prototypes of the complete product.
Thus this section is not about concrete evaluation, but sketching of ideas that
should be considered when we have something more stable.
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We can test the search tool independently. Precision and recall, the basic
measures for any kind of information retrieval, can be used with the term
search. Precision is the ratio of found relevant instances to all found instances,
and recall is the ratio of found relevant instances to all relevant instances
in the ontology. Precision can be determined by looking at the results; if
the user has searched for edible mushrooms, the results should not contain
anything poisonous. Recall needs a gold standard; that can be for example
a SPARQL query performed by an ontology expert. The search results can
also be compared to those from other terminology sources, such as Nomen9

(Wollmersdorfer, 2006), a multilingual dictionary specialised in animals and
plants.

If precision turns out low, it could mean that the ontology itself contains
errors, such as classifying a dog as a feline. Even without clear errors, the
structure of the ontology might just be contrary to the human intuition. For
example, in a same class Portrait art there might be names of specific art
pieces like Mona Lisa and generic terms, such as self-portrait or tronie, when
the user would want only the other category.

If recall is bad, it means that there are good terms in the ontology but the
search does not find them. We assume that the gold standard is done by an
ontology expert in SPARQL, and the test is done with a pre-constructed query
described in section 4.2.2; probably then the pre-constructed query is ignor-
ing some important relations. There might be some generic isA or isNamed
predicate not used by the query template, and it could be just added to the
pre-constructed query. An opposite problem to the one with precision occurs if
a category is too narrow for the human intuition, and the wanted result would
combine two or more categories. A more complicated problem is if the user
wants to query something that is not covered by an isA relation; like the art
genre example in 4.2.2, and the reason that the gold standard query succeeds
is because it has searched more specific relations. This should be a separate
matter to test; how often are the users’ needs really covered by such a simple
query template? If the tests are just pre-determined tasks, such as finding all
carnivores and all paintings by Rembrandt, we might miss an important issue.

Coverage of languages is another feature to test. Out of all relevant terms,
how many of them have translations in other languages than English? The

9http://nomen.at/
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premise of the study is that ontologies are better than dictionaries for working
with languages that one does not know, because they are grouped by concepts,
and therefore one can trust the translation to be of the exact sense of the
English word. If there are no translations for many of the terms, the ontology
is a lot less useful. The query would still return lots of terms, and everything
about the design of a grammar based on concepts still holds, but the grammar
writer would have to resort to dictionaries. A concrete test would be to give
a control group a traditional lexicon, without any structure, and compare the
success in term acquisition.

In addition to the translations’ availability, we need to take into account
their quality. Are the translations correct and recognisable, that is, really
English or Swedish or Polish, or are they scientific names in Latin? An ontology
is not necessarily designed thinking about human users who want to use its
vocabulary, but experts who need that sort of terms. As a final, very practical
detail, the search should be robust: do we get results for “cat”, “Cat” and
“Cats”, and if not, do we at least get informative error messages?

Testing the search connected to a grammar is more of a usability test.
Some things are purely technical: the user should be able to add, remove and
edit the terms found by the ontology search in an easy and intuitive way. With
the import to GF option, it should be possible to store terms from multiple
queries and put them all into the same GF file. One of the more complicated
questions is to estimate how well does a user with no knowledge of GF handle
the task? In section 4.2.3 we talked about the problem of determining an
abstract syntax type for the new terms and suggested two solutions: ask the
user or connect the search to the grammar such that the type of the retrieved
terms is one of the types in the grammar.

Besides the abstract syntax, the automatic creation of the concrete syn-
tax should be evaluated. Assuming that the ontology search (or later with
TermFactory connection) does provide good terms in many languages, it is
still not given that a casual user knows how to complete the information in
the GF grammar. The GF resource grammar API requires a few forms of the
words that are not predictable, and a non-expert—even a native speaker of
Finnish—hardly knows that for certain Finnish nouns ending in e only the
singular nominative is needed, and for the irregular paradigm the constructor
needs singular nominative and plural partitive. However, if everything goes as
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planned with TermFactory, the linguistic information could be stored there,
and its conversion to GF inflection could be automated.

A test that would put everything together is to get a grammar that is
in progress, use the ontology search to add its coverage and evaluate how
helpful the ontology component is for the user. The test could be performed
with different subjects: experts in GF, experts in the domain, professional
translators and a group without special knowledge in any of the fields. The
state of the grammar can also be varied: the tool’s usefulness for a grammar
writer can be tested with a very rough draft of a grammar, and the scenario
with the translator can be tested with an already working grammar, which
is to be extended. The whole process of translation, with plugins to possible
translation platforms is outside the scope of this study.

5 Related work

In this section we see a couple of studies related to different aspects of on-
tologies and lexicon management: retrieval of terms and relations, ontology
verbalisation and semantics as grammar rule constraints.

Term retrieval Many approaches on term retrieval from free text rely on the
distributional hypothesis (Sahlgren, 2008): the words are characterised by the
environments where they appear, and two words appearing in similar contexts
suggests that they are also semantically similar.10 The methods can be used to
harvest terms, or also relations between them, ultimately building an ontology
automatically.

Lin (1998) uses dependency parsing to cluster similar words. Instead of
n-grams or windows of nearby words, the corpus is first parsed to dependency
triples, and word similarity is determined by appearing in similar triples. For
evaluation, the groupings produced by the algorithm were compared to Roget
Thesaurus and WordNet, and they proved to be closer to WordNet than Roget
is.

10Although distributional method may have problems distinguishing between synonyms
and antonyms, since they are same type of things, e.g. young and old are properties of age,
black and white are colours.
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Yangarber et al. (2002) have studied the learning of generalised names
in the text. The algorithm is trained with a domain-specific corpus, using
seeds and creating patterns of words around the seed; patterns are learned
from the seed terms, and new terms are learned from the patterns. Finding
multiple categories simultaneously and providing negative categories improves
the precision by reducing overgeneration.

Ponzetto and Strube (2007) create a taxonomy from Wikipedia’s cate-
gories. The categorisation system of Wikipedia is already structured informa-
tion, but it is not a complete taxonomy; there are missing links and redundan-
cies, multiple inheritance in a subcategory, such as Buildings and infrastruc-
tures in Japan, and many types of relations (both isA and other) between a
category and its supercategories. They use various methods: syntactic pars-
ing to match the heads of the categories (British computer scientists is a
subclass of Computer scientists), lexicosyntactic patterns extracted from a
large corpus and other, more specific heuristics. The coverage and quality are
evaluated by comparing the results to ResearchCyc11 and WordNet, and the
results are competitive with the manually developed ontologies.

Paukkeri et al. (2010) also use Wikipedia to learn concept hierarchies
automatically, but instead of Wikipedia’s category system, they use articles.
They use three methods to determine important keywords from an article. As
a baseline they use tf-idf, which is the ratio of a term’s frequency in a certain
document vs. in a general corpus. Other methods are statistical keyphrase
extraction (Paukkeri and Honkela, 2010) and fuzzy heuristics, such as empha-
sis, frequency and appearance in the beginning (introduction) and the end
(conclusion) of an article.

Seppo Nyrkkö’s PhD study (forthcoming) combines ontologies and free
text. We find how the relations in the ontology are expressed in free text,
and by using different types of evidence, we can get new relations and new
items to the ontology. The evidence includes similarities in appearance and
behaviour, for example being synonyms in a dictionary, having a common syn-
tactic dependency or a common property in an ontology (Nyrkkö, 2011). This
method can be used to measure similarities between terms, both in ontologies
and in free text. The terms could be inside one language, for example medical
terminology and layman terms—how does a term like flu coincide in the two

11http://research.cyc.com/
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domains? The method can also be used between languages, to find out the
words’ coverage in semantic space and their overlap.

Ontology verbalisation Cimiano et al. (2011) have designed LexInfo, a
project similar to TermFactory. LexInfo builds on the Lexicon Model for On-
tologies (lemon), which links the ontology to linguistic information, including
morphological composition, syntactic dependencies and semantics. Davis et al.
(2012) present a joint project with GF and lemon, where GF is used to provide
multilingual support for ontology verbalisation.

Semantics as grammar constraints Muresan (2010) uses a grammar for-
malism called Lexicalized Well-Founded Grammar (Muresan, 2008) to map the
text to a meaning representation. The formalism has two types of ontology-
based constraints: the first is semantic composition, that is, the meaning of an
expression is composed of its parts. When parsing a noun phrase, an ontology
is queried for validation of the semantics; for example, a noun phrase blue shirt
is valid, because blue is a colour, and a colour is an acceptable property of a
shirt. The other constraint is semantic interpretation, which is done after the
semantic composition check; it eliminates the semantically impossible parse
from a sentence like I saw the man with the blue shirt. Cimiano and Reyle
(2003) translate the sentences into Logical Description Grammar and use an
ontology to rule out impossible parses, in a similar manner. By parsing the
text to a logical framework and identifying the concepts in an ontology, it is
possible to infer whether some actions are feasible. A GF grammar does this
by design, with its type system.

6 Conclusion

Throughout this thesis, we have explored one approach on rule-based machine
translation, that is, mapping utterances between multiple languages via seman-
tic interlingua. The goal of MOLTO is not a translation system to compete on
the free text market, but a set of tools to build reliable domain-specific gram-
mars, aimed for providers of information. In this thesis we have gone through
different use cases where ontologies could be exploited: as a help to resolve
ambiguity in parsing, as a source of lexicon and as the source of the grammar
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itself. Evaluation is out of the scope of this study, but we have sketched pos-
sible features to test: coverage, precision and recall, usability and utility in
different phases of grammar writing.

As for disambiguation, the considered options are to model a hierarchical
ontology structure in the grammar’s type system, to use an external ontology
along with the grammar and to build an additional grammar with explicit dis-
tinctions, for the aid of human disambiguation. Out of these options, the first
is in danger to turn out heavy and infeasible, and the second has no guarantee
that the items in the grammar correspond to the ones in the ontology. The
third option has already been used in small scale; the question is whether it is
feasible in larger applications and if an ontology could help in the process.

Term harvesting from an ontology or other structured term collection is,
in principle, an easy task. The questions are limited to practical issues, such as
the usability of different retrieval methods, and how to turn a list of concepts
with no linguistic detail into a lexicon that is suited for an NLP application.
We concluded that a pre-constructed query where the user inserts words is
most efficient solution for term harvesting, with a possibility to do a native
SPARQL query whenever the pre-constructed query is too limited.

Multilingual ontology verbalisation is a promising use case for grammar-
based methods. Their biggest weakness is limited coverage, which is a ma-
jor issue when preparing for user input. When the goal is to verbalise pre-
determined content, the human effort can be used in making the output better
instead of broader. Possible platforms for presenting the information are nat-
ural language queries with natural language answers, and semantic wikis. The
latter option is also a way for users to extend the ontology by writing new
statements—the language recognised by the grammar is a translation of the
underlying ontology, so new sentences written in that language could be added
to the ontology.
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