
Grammar Engineering Tools

John Camilleri, Ramona Enache, Thomas Hallgren, Aarne Ranta

MOLTO Final Presentation 2013

FP7-ICT-247914



Grammars as Software

Key to high-quality translation: control over details, debugging

As opposed to: holistic systems, more data, parameter tuning

Similar to: compilers (translators of computer languages)

• expected to translate correctly

• pipeline: parsing + semantic analysis + generation

• semantics encoded in abstract syntax



Compilation via abstract syntax



Translation via abstract syntax



Translation example

Catalan: Guernica està pintat sobre llenç per Pablo Picasso en 1937.

Dutch: Guernica werd in 1937 door Pablo Picasso op canvas geschilderd.

English: Guernica was painted on canvas by Pablo Picasso in 1937.

Finnish: Guernican maalasi Pablo Picasso kankaalle vuonna 1937.

French: Guernica a été peint sur canvas par Pablo Picasso en 1937.



Multilingual grammar in GF

Declarative program defining the translation relation among any num-

ber n of languages

• Abstract: fun Painted : Painting -> Painter -> Fact

• English: lin Painted x y = x ++ "painted" ++ y

• Finnish: lin Painted x y = x ++ "maalasi" ++ y

• French: lin Painted x y = x ++ "a peint" ++ y



But isn’t this too simple-minded?



The complexity of concrete syntax

French: agreement, clitics, ... (il a peint X vs. j’ai peint X vs. il les a
peintes ...)

lin

Painted x y = x.s ! Nom ++ case y.isPron of {

True => y.s ! Acc ++ avoir_V ! x.agr ++ peindre_V ! PastPart y.agr ;

False => avoir_V ! x.agr ++ peindre_V ! PastPart MascSg ++ y.s ! Acc

}

avoir_V = table ["avoir","ai","as","a","avons",...]

Moreover: tenses, negation, question forms, ...



The complexity of multilingual systems

Two dimensions: semantic components X languages. For example:

module Bulgarian Catalan Dutch English ...
Answer AnwerBul AnswerCat AnswerDut AnswerEng ...
Query QueryBul QueryCat QueryDut QueryEng ...
Text TextBul TextCat TextDut TextEng ...
Lexicon LexiconBul LexiconCat LexiconDut LexiconEng ...
Data DataBul DataCat DataDut DataEng ...

Museum Library (WP8): (1 + 15) * 5 = 80 modules

Mathematics Library (WP6): (1 + 15) * 16 + 27 = 676 modules



Mastering the complexity

Programming language: GF - functions, types, modules

Compiler: type checking, optimizations

Library: low-lever linguistic details

Development environment: projects consistency, code navigation

Documentation: tutorials, reference manuals, best practices

Training: tutorial events, on-line courses

Community: helping each other



The GF programming language

First created at Xerox Research in 1998

For CS people: a special-purpose functional language for grammars
(like YACC, but more powerful)

For MT people: a formalism for synchronous grammar (like TAG, but
more powerful)

For language theory people: a front-end to PMCFG (Parallel Multi-
ple Context-Free Grammars)

New things during MOLTO:

• probabilistic GF grammars



The GF compiler

From high-level GF to low-level PGF (Portable Grammar Format)

Separate compilation of modules

Code generation to different formats (e.g. Nuance, XFST/Lexc, Giza)

New things during MOLTO:

• the PGF format
• optimized compilation
• run-time bindings from C, C++, Java, Python
• compilation as cloud service



The GF Resource Grammar Library

Complete morphology engine + comprehensive syntax + lexicon

Afrikaans Bulgarian Catalan Chinese Danish Dutch English
Finnish French German Greek Hindi Italian Japanese
Latvian Maltese Nepali Norwegian Persian Polish Punjabi
Romanian Russian Sindhi Spanish Swedish Thai Urdu

New during MOLTO:

• 13 new languages (built outside MOLTO): 9 Asian, 3 EU

• big lexicon resources (10-100k lemmas) for 11 languages



The library API



The painted predicate with RGL

One-liners in every language - grammar writer can ignore details

lin Painted x y = mkS pastTense (mkCl x paint_V2 y)

lin Painted x y = mkS pastTense (mkCl x maalata_V2 y)

lin Painted x y = mkS perfectTense (mkCl x peindre_V2 y)



GF development environments

GF shell: support for interactive compilation and testing

IDE (Integrated Development Environment) - an Eclipse plug-in

Cloud-based grammar editor: on-line grammar development

New during MOLTO:

• the Eclipse IDE

• the cloud-based grammar editor



GF documentation

http://www.grammaticalframework.org/

100+ articles on GF

New during MOLTO:

• 30+ articles

• Best practices

• The GF book: Aarne Ranta, Grammatical Framework: Program-

ming with Multilingual Grammars, CSLI Publications, Stanford,

2011.

• Chinese translation of the book by Yan Tian, Shanghai, 2013.

http://www.grammaticalframework.org/




GF training events

Tutorials in large conferences: LREC-2010, CADE-2011, ICFP-2012

GF Summer Schools: 2009 Gothenburg, 2011 Barcelona, 2013 Frauenchiem-

see (Bavaria)

• 2-week event with 30 participants from 15 countries



GF community

117 members in gf-dev mailing list

Around 50 resource grammar developers

Coverage of world’s languages: http://www.postcrashgames.com/gf world/

Developers in most of these countries

http://www.postcrashgames.com/gf_world/




What is possible

Size of an average application: 15 languages, 200 functions

Size of the biggest application: 5 languages, 56k functions

Effort for building an average grammar: days for the first language,
hours for the next ones

Skills required:

• to get a project started: domain expertise, some days of GF train-
ing

• to add a language: practical language skills, some hours of GF
training



Bootstrapping a grammar

To get started: design abstract syntax to fit an ontology

The first language: concrete syntax using RGL API and parsing exam-

ples

Later languages: change the words, and perhaps a few syntax functions

Extend vocabulary: extract words from other sources (wordnet, Wikipedia,

Wiktionary)



Example: abstract syntax for CRM ontology

abstract QueryPainting = {

cat

Painting ; Query ;

fun

QPainter : Painting -> Query ; -- who painted x

QYear : Painting -> Query ; -- when was x painted

QMuseum : Painting -> Query ; -- where is x displayed

QColour : Painting -> Query ; -- what colours does x have

QSize : Painting -> Query ; -- what is the size of x

QMaterial : Painting -> Query ; -- what material is x painted on



Example: concrete syntax for English

concrete QueryPaintingEng of QueryPainting =

open LexiconPaintingEng, SyntaxEng, ParadigmsEng in {

lincat

Painting = NP ; Query = QS ;

lin

QPainter t = mkQS pastTense (mkQCl who_IP paint_V2 t) ;

QYear t = mkQS pastTense (mkQCl when_IAdv (mkCl t (passiveVP paint_V2))) ;

QMuseum t = mkQS (mkQCl where_IAdv (mkCl t displayed_VP))

QColour t = mkQS (mkQCl whatPl_IP (mkNP thePl_Det (mkCN (mkN2 colour_N) t))) ;

QMaterial t = mkQS (mkQCl whatSg_IP (mkNP the_Det (mkCN (mkN2 material_N) t))) ;

QSize t = mkQS (mkQCl whatSg_IP (mkNP the_Det (mkCN (mkN2 size_N) t))) ;



Example: concrete syntax for German

concrete QueryPaintingGer of QueryPainting =

open LexiconPaintingGer, SyntaxGer, ParadigmsGer in {

lincat

Painting = NP ; Query = QS ;

lin

QPainter t = mkQS pastTense (mkQCl who_IP malen_V2 t) ;

QYear t = mkQS pastTense (mkQCl when_IAdv (mkCl t (passiveVP malen_V2))) ;

QMuseum t = mkQS (mkQCl where_IAdv (mkCl t ausgestellt_VP))

QColour t = mkQS (mkQCl whatPl_IP (mkNP thePl_Det (mkCN (mkN2 farbe_N) t))) ;

QMaterial t = mkQS (mkQCl whatSg_IP (mkNP the_Det (mkCN (mkN2 material_N) t))) ;

QSize t = mkQS (mkQCl whatSg_IP (mkNP the_Det (mkCN (mkN2 groesse_N) t))) ;



The smartest solution: functor

incomplete concrete QueryPaintingI of QueryPainting =

open LexiconPainting, Syntax in {

lincat

Painting = NP ; Query = QS ;

lin

QPainter t = mkQS pastTense (mkQCl who_IP paint_V2 t) ;

QYear t = mkQS pastTense (mkQCl when_IAdv (mkCl t (passiveVP paint_V2))) ;

QMuseum t = mkQS (mkQCl where_IAdv (mkCl t displayed_VP))

QColour t = mkQS (mkQCl whatPl_IP (mkNP thePl_Det (mkCN (mkN2 colour_N) t))) ;

QMaterial t = mkQS (mkQCl whatSg_IP (mkNP the_Det (mkCN (mkN2 material_N) t))) ;

QSize t = mkQS (mkQCl whatSg_IP (mkNP the_Det (mkCN (mkN2 size_N) t))) ;

sharing all code but the lexicon (works for 90% of rules)



Example-based grammar writing

Extract translation rule by parsing an example

Abstract syntax Like She He first grammarian
English example she likes him first grammarian
German translation er gefällt ihr ORACLE
resource tree mkCl he Pron gefallen V2 she Pron GF parser
concrete syntax rule Like x y = mkCl y gefallen V2 x variables renamed

ORACLE = native speaker or statistical sentence alignment

Methodology with some tool support



The MOLTO heritage

More languages in RGL: reason to build more applications

Applications: reason to support more languages in RGL

Tool of choice for controlled language implementation

Community growth, enterprise awareness

Next step: scaling up to open-domain translation (first experiments in

MOLTO)



Demo: eclipse-film.m4v

Grammar cloning, library browsing, regression testing

./eclipse-film.m4v


Publications related to MOLTO grammar tools

K. Angelov and A. Ranta. Implementing Controlled Languages in GF. N. Fuchs
(ed.), CNL-2009 Controlled Natural Languages, LNCS/LNAI 5972, 2010.

J. Camilleri. An IDE for the Grammatical Framework. Third International Workshop
on Free/Open-Source Rule-Based Machine Translation (FreeRBMT 2012).

G. Détrez and A. Ranta. Smart Paradigms and the Predictability and Complexity of
Inflectional Morphology. EACL (European Association for Computational Linguis-
tics), Avignon, April 2012.

R. Enache, A. Ranta, and K. Angelov. An Open-Source Computational Grammar
of Romanian. A. Gelbukh (ed.), CiCLING-2010, LNCS 6008, 2010.

A. Ranta. Example-Based Grammar Writing. In S. Larsson and L. Borin (eds), From
Quantification to Conversation. Festschrift for Robin Cooper on the Occasion of his
65th Birthday. College Publications, London, 2012.

A. Ranta. Machine Translation and Type Theory. In P. Dybjer, S. Lindström, E.
Palmgren, and G. Sundholm (eds), Epistemology versus Ontology. Essays on the
Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf. Springer,
Heidelberg, 2012. pp. 281-312.



A. Ranta, R. Enache, and G. Détrez. Controlled Language for Everyday Use: the
MOLTO Phrasebook. In N. Fuchs and M. Rosner (eds), Controlled Natural Lan-
guage 2010, Springer LNCS/LNAI, vol. 7175, 2012. pp. 115-136.

A. Ranta, Grammatical Framework: Programming with Multilingual Grammars, CSLI
Publications, Stanford, 2011.

A. Ranta, K. Angelov, and T. Hallgren. Tools for multilingual grammar-based trans-
lation on the web. Proceedings of the ACL 2010 System Demonstrations, ACM
Digital Library, 2010.

S. Virk, M. Humayoun, and A. Ranta. An Open-Source Punjabi Resource Grammar.
Proceedings of RANLP-2011, Recent Advances in Natural Language Processing,
Hissar, Bulgaria, 12-14 September, 2011. pp. 70-76.

S. Virk, M. Humayoun, and A. Ranta. An Open Source Urdu Resource Grammar.
Proceedings of the 8th Workshop on Asian Language Resources (Coling 2010 work-
shop), 2010.

S. Virk. Computational Linguistics Resources for Indo-Iranian Languages, PhD The-
sis, University of Gothenburg, 2013.


