
From Natural Language to SPARQL : a prototype

Petar Mitankin, Ontotext

First Project Meeting of MOLTO

8 September 2010



The Conversion Problem

Given:
I ontology
I GF grammars

Find:
I an algorithm that converts grammatically correct phrases into

ontology constructions

We deal with a concrete instance of the Conversion Problem.



The concrete ontology

I PROTON: classes for named entities and relations between
named entities

I dataset: 29, 104 named entities =
6, 006 persons + 8, 259 organizations + 12, 219 locations +
2, 620 job titles

By ontology we mean both the scheme that is used to represent the
data (PROTON) and the dataset.



The concrete ontology as a directed graph

City57

"Varna"

<label>

Country22
<subregionOf>

City

<type> Location

<type>

"Bulgaria"

<label>

Country
<type>

<type>

<subClassOf>

<subClassOf>

arcs ≈ 500, 000
arcs + automatically inferred arcs ≈ 1, 000, 000



SPARQL

SPARQL
ontology

=
SQL

relational database

SELECT DISTINCT ?from ?label ?to WHERE {
?from ?label ?to .

}

from label to
node ′1 label1 node ′′1
node ′2 label2 node ′′2

. . .

node ′N labelN node ′′N



Example: all organizations

SELECT DISTINCT ?x WHERE {
?x <type> <Organization> .

}

x
node1

node2

. . .

nodeK



Example: all persons that work as project manager at
Ontotext

SELECT DISTINCT ?person WHERE {
?person <hasPosition> ?jobPos .
?jobPos <withinOrganization> ?org .
?org <label> "Ontotext".
?jobPos <hasTitle> ?jobTit .
?jobTit <label> "Project Manager".

}



What follows from the SPARQL examples?

SPARQL =
SQL

relational database
· ontology



What follows from the SPARQL examples?

SPARQL is nice, but if you want to use it to extract information
from our ontology then you have to know PROTON: you have to
know very well the graph that we use to represent the data: the
names of the nodes, the names of the arcs...



The concrete GF grammars

The Query Grammars:

15 categories: Query, Relation, Kind, Property, Individual, Activity,
Name, Loc, Org, Pers, ...
59 functions: ...

The language represented by the Query Grammars:

give me all people
give me all organizations in L
give me all persons that work as JT at O
...



GF is nice: multiple ways to say one and the same
thing

64 ways to say
give me all people that work at O:

give me all persons that work at O
give me all people that collaborate in O
give me all persons that collaborate in O
give me the people that work at O
give me the persons that work at O
give me the people that collaborate in O
give me the persons that collaborate in O
give me the names of all people that work at O
give me the names of all persons that work at O
give me the names of all people that collaborate in O
give me the names of all persons that collaborate in O
give me the names of the people that work at O
give me the names of the persons that work at O
give me the names of the people that collaborate in O
give me the names of the persons that collaborate in O
what are all people that work at O
what are all persons that work at O
what are all people that collaborate in O
what are all persons that collaborate in O
what are the people that work at O
what are the persons that work at O



GF is very nice: text prediction
give me

↓
give me a
give me all
give me an
give me information
give me locations
give me names
give me nicknames
give me one
give me organizations
give me other
give me people
...
give me L
give me O
give me P



GF is very very nice: parser

all organizations located in L

MQuery

QSet

SAll

KProp

Located Organization

L



The concrete instance of the Conversion Problem

GF query grammars tree interoperability module SPARQL query

interoperability module = ?



The interoperability module

Step 1: simplify the tree

MQuery

QSet

SAll

KProp

Located Organization

L

QSet

KProp

constant L for each Organization



The interoperability module

Step 2: case study

if the simplified tree ... then

SELECT DISTINCT ?organization WHERE {
?organization <type> Organization .
?organization <locatedIn> ?loc .
?loc <label> L .

}

else if the simplified tree ... then

SELECT DISTINCT blah blah blah

else if the simplified tree ... then

SELECT DISTINCT blah blah blah



Future work

I generalization of this concrete instance of the Conversion
Problem:
template for interoperability between GF grammars and
ontologies

I Enlarge the size of the ontology: FactForge (DBPedia,
Freebase, WordNet, ...)

I technical improvements


