
An Experiment in Shallow Robust Parsing

Krasimir Angelov

Chalmers University of Technology

March 9, 2011



The Question

Can we apply GF to open-domain text?

Current state

Parsing for small controlled languages

Language Generation from formal representation

Long-term goal

Robustness for out of coverage content

Statistical disambiguation



1 The Concrete Experiment

2 Robustness

3 Disambiguation

4 Penn Treebank for GF



The Concrete Experiment

Resources

English Resource Grammar

Oxford Advanced Learner’s Dictionary (∼ 40000 words)

Simplified Named Entities recognizer

Grammar Evaluation and Probability Training

Sections 2–21 from PennTreebank

Note: In a previous work the parser was optimized to work
efficiently for wide coverage grammars and large lexicons



English Resource Grammar

A distinguishing feature of GF is that grammars can
be reused as software libraries.

English Resource Grammar

Part of the resource library

Originally not intended for parsing

Wide coverage English grammar

Still there are missing syntactic constructions

Highly ambiguous



Named Entities Recognizer

The Named Entity recognizer uses this simple rules:

A sequence of words starting with a capital letter is a name

’-’ and ’&’ are permitted between the words of a name

The recognizer cannot be implemented directly in GF:

Some time ago I developed API which lets the user extend the
parser with custom code

For the experiment I implemented the NE recognizer as a
Haskell procedure



1 The Concrete Experiment

2 Robustness

3 Disambiguation

4 Penn Treebank for GF



Example Tree

For out of grammar sentences we want partial trees:

������

����� 	

���
��� �����

������ ����� ������ ����

���� ������

	 	

	 	

��������� 	

	 	



Robustness

As a first approximation we use chunk parsing which
is more robust than full parsing.

We scan the sentence for:

basic noun phrases i.e. without PP atachement

verb phrases without the object

prepositions - mark the PP atachements

The high-level syntactic constructions are excluded to reduce
the ambiguities and increase the robustness



Robustness



Initial Evaluation

We collected all basic noun phrases from PennTreebank (2–21)
and tried to parse them:

Success

75% of the phrases were parsed

Failure

Incomplete patterns for Named Entities (ex: the United
States)

Syntax for dates?

Missing words

The coverage of the verb phrases is not evaluated yet because in
PennTreebank they include the object as well.



How to increase the coverage?

Better coverage for the syntax of Named Entities. Perhaps
something like ANNIE in GATE, or NERC in KIM can be
reimplemented in GF.

Someone have to do the grammar for dates.

Improve the lexicon by collecting list of words from
PennTreebank. The parser can just guess the POS tag for
the unknown words (easy).



1 The Concrete Experiment

2 Robustness

3 Disambiguation

4 Penn Treebank for GF



Observation

Close to the surface the disambiguation is easy:

The parsed chunks are mostly unambiguous. There are at
most 4-5 trees for one phrase.

The ambiguities can be fixed by either:

assigning simple priorities (probabilities) to the different
functions
constraining the part of speech tags

Example: “other corporate insider”

AdjCN (PositA other A) (AdjCN (PositA corporate A) (UseN insider N))

CompoundCN NumSg other N (AdjCN (PositA corporate A) (UseN insider N))



1 The Concrete Experiment

2 Robustness

3 Disambiguation

4 Penn Treebank for GF



How to Convert Penn Treebank to GF?

We need a treebank consistent with GF for further experiments.
Penn Treebank is not always consistent with GF but:

we can use the GF parser to parse chunks of the sentence

tags NN,NNS,VBN,VB,VBG,VBZ,VBD,VB and JJ match well
with the corresponding categories in GF so we can use this for
disambiguation.

we can recover some parts of the high-level syntax by looking
at the annotations

After some transformations we have 69% of the treebank in GF
abstract trees


	The Concrete Experiment
	Robustness
	Disambiguation
	Penn Treebank for GF

