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Introduction
Empirical Machine Translation

Empirical MT relies on large parallel aligned corpora.

L’objectiu de MOLTO és desenvolupar un conjunt
d’eines per a traduir textos entre diversos idiomes en
temps real i amb alta qualitat. Les llengües són mòduls
separats en l’eina i per tant es poden canviar; els
prototips que es construiran cobriran la major part dels
23 idiomes oficials de la UE.

Com a tècnica principal, MOLTO utilitza gramà-
tiques semàntiques de domini espećıfic i interlingues
basades en ontologies. Aquests components
s’implementen en GF (Grammatical Framework), un
formalisme de gramàtiques on es relacionen diversos
idiomes a través d’una sintaxi abstracta comú. El GF
s’ha aplicat en diversos dominis de mida petita i
mitjana, t́ıpicament per tractar fins a un total de deu
idiomes, però MOLTO ampliarà això en termes de
productivitat i aplicabilitat.

Part de l’ampliació es dedicarà a augmentar la mida
dels dominis i el nombre d’idiomes. Una part important
és fer la tecnologia accessible per als experts del domini
sense experiència amb GFs i reduir al ḿınim l’esforç
necessari per a la construcció d’un traductor.
Idealment, això es pot fer només estenent un lexicó i
escrivint un conjunt de frases d’exemple.

MOLTO’s goal is to develop a set of tools for
translating texts between multiple languages in real
time with high quality. languages are separate modules
in the tool and can be varied; prototypes covering a
majority of the EU’s 23 official languages will be built.

As its main technique, MOLTO uses domain-specific
semantic grammars and ontology-based interlinguas.
These components are implemented in GF
(Grammatical Framework), which is a grammar
formalism where multiple languages are related by a
common abstract syntax. GF has been applied in
several small-to-medium size domains, typically
targeting up to ten languages but MOLTO will scale
this up in terms of productivity and applicability.

A part of the scale-up is to increase the size of
domains and the number of languages. A more
substantial part is to make the technology accessible
for domain experts without GF expertise and minimize
the effort needed for building a translator. Ideally, this
can be done by just extending a lexicon and writing a
set of example sentences.
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escrivint un conjunt de frases d’exemple.

MOLTO’s goal is to develop a set of tools for
translating texts between multiple languages in real
time with high quality. languages are separate modules
in the tool and can be varied; prototypes covering a
majority of the EU’s 23 official languages will be built.

As its main technique, MOLTO uses domain-specific
semantic grammars and ontology-based interlinguas.
These components are implemented in GF
(Grammatical Framework), which is a grammar
formalism where multiple languages are related by a
common abstract syntax. GF has been applied in
several small-to-medium size domains, typically
targeting up to ten languages but MOLTO will scale
this up in terms of productivity and applicability.

A part of the scale-up is to increase the size of
domains and the number of languages. A more
substantial part is to make the technology accessible
for domain experts without GF expertise and minimize
the effort needed for building a translator. Ideally, this
can be done by just extending a lexicon and writing a
set of example sentences.



Introduction
Empirical Machine Translation

Aligned parallel corpora numbers

Corpora

Corpus # segments (app.) # words (app.)
JRC-Acquis 1.0 · 106 30 · 106

Europarl 1.5 · 106 45 · 106

United Nations 3.8 · 106 100 · 106

Books
Title # words (approx.)
The Bible 0.8 · 106

The Dark Tower series 1.2 · 106

Encyclopaedia Britannica 44 · 106
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The Noisy Channel approach

Language E
(e ∈ E )

Language F
(f ∈ F )

translation

Mathematically:

P(e|f ) =
P(e) P(f |e)

P(f )

T (f ) = ê = argmaxe P(e|f ) = argmaxe P(e) P(f |e)
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Lexical correspondence between languages

Data: aligned corpora in source and target languages

argmax

Search done by the decoder
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The language model P(e)

Language model

T (f ) = ê = argmaxe P(e) P(f |e)

Estimation of how probable a sentence is.

Näıve estimation on a corpus with N sentences:

Frequentist probability
of a sentence e: P(e) =

Ne

Nsentences

Problem:
Long chains are difficult to observe in corpora.
⇒ Long sentences may have zero probability!



SMT, components
The language model P(e)

Language model
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SMT, components
The language model P(e)

The n-gram approach

The language model assigns a probability P(e)
to a sequence of words e ⇒ {w1, . . . , wm}.

P(w1, . . . , wm) =
m∏

i=1

P(wi |wi−(n−1), . . . , wi−1)

The probability of a sentence is the product of the conditional
probabilities of each word wi given the previous ones.

Independence assumption: the probability of wi is only
conditioned by the n previous words.



SMT, components
The language model P(e)

Example, a 4-gram model

e: All work and no play makes Jack a dull boy

P(e) = P(All|φ, φ, φ) P(work|φ, φ,All) P(and|φ,All,work)
P(no|All,work,and) P(play|work,and,no)
P(makes|and,no,play)P(Jack|no,play,makes)
P(a|play,makes,Jack)P(dull|makes,Jack,a)
P(boy|Jack,a,dull)

where, for each factor,

P(and|φ, All, work) =
N(All work and)

N(All work)
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SMT, components
The language model P(e)

Main problems and criticisims:

Long-range dependencies are lost.

Still, some n-grams can be not observed in the corpus.

Solution

Smoothing techniques:

Linear interpolation.

Back-off models.

P(and|All, work) =

λ3

N(All,work,and)

N(All,work)
+λ2

N(work,and)

N(work)
+ λ1

N(and)

Nwords
+ λ0
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SMT, components
The language model P(e)

Language model: keep in mind

Statistical LMs estimate the probability of a sentence
from its n-gram frequency counts in a monolingual
corpus.

Within an SMT system, it contributes to select fluent
sentences in the target language.

Smoothing techniques are used so that not frequent
translations are not discarded beforehand.
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Translation model

T (f ) = ê = argmaxe P(e) P(f |e)

Estimation of the lexical correspondence between languages.

How can be P(f |e) characterised?

NULL Quan tornes a casa ?

When are you coming back home ?
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SMT, components
The translation model P(f |e)

NULL Quan tornes a casa ?

When are you coming back home ?

One should at least model for each word in the source language:

Its translation,

the number of necessary words in the target language,

the position of the translation within the sentence,

and, besides, the number of words that need to be generated
from scratch.



SMT, components
The translation model P(f |e)

Word-based models: the IBM models

They characterise P(f |e) with 4 parameters: t, n, d and p1.

Lexical probability t
t(Quan|When): the prob. that Quan translates into When.

Fertility n
n(3|tornes): the prob. that tornes generates 3 words.
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Word-based models: the IBM models

They characterise P(f |e) with 4 parameters: t, n, d and p1.

Distortion d
d(j |i , m, n): the prob. that the word in the j position
generates a word in the i position. m and n are the
length of the source and target sentences.

Probability p1

p(you|NULL): the prob. that the spurious word you is
generated (from NULL).



SMT, components
The translation model P(f |e)

Back to the example:

NULL Quan tornes a casa ?

NULL Quan tornestornestornes casa ?

Fertility

NULL When are coming back home ?

Translation

you When are coming back home ?

Insertion

When are you coming back home ?

Distortion
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The translation model P(f |e)

Word-based models: the IBM models

How can be t, n, d and p1 estimated?

Statistical model ⇒ counts in a (huge) corpus!

But...
Corpora are aligned at sentence level, not at word level.

Solutions

Pay someone to align 2 milion sentences word by word.

Estimate word alignments together with the parameters.
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Expectation-Maximisation algorithm

Parameter initialisation

Alignment probability calculation

Parameter reestimation

Alignment probability recalculation

Converged?
NO

YES

Final parameters and alignments
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SMT, components
The translation model P(f |e)

Alignment’s asymmetry

The definitions in IBM models make the alignments asymmetric

each target word corresponds to only one source word, but
the opposite is not true due to the definition of fertility.

Catalan
to

English

NULL Quan tornes a casa ?

When areyou coming back home ?

English
to

Catalan

NULLWhen areyou coming back home ?

Quan tornes a casa ?
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to

Catalan

NULLWhen areyou coming back home ?

Quan tornes a casa ?
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Graphically:

NULL Quan tornes a casa ?

NULL

When
are
you

coming

back

home

?

Catalan to English
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Alignment symmetrisation

Intersection: high-confidence, high precision.

NULL Quan tornes a casa ?

NULL

When
are
you

coming

back

home

?

Catalan to English
⋂

English to Catalan
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Alignment symmetrisation

Union: lower confidence, high recall.

NULL Quan tornes a casa ?

NULL

When
are
you

coming

back

home

?

Catalan to English
⋃

English to Catalan
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From Word-based to Phrase-based models

f: En David llegeix el llibre nou.

e: David reads the

e: David reads the book of new. 7
e: David reads the book again. X
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From Word-based to Phrase-based models

f: En David llegeix el llibre nou.

e: David reads the new book. X

e: David reads the book of new. 7
e: David reads the book again. X
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From Word-based to Phrase-based models

f: En David llegeix el llibre nou.

e: David reads the new book. X

f: En David llegeix el llibre de nou.

e: David reads the book of new. 7
e: David reads the book again.

X
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From Word-based to Phrase-based models

f: En David llegeix el llibre nou.

e: David reads the new book. X

f: En David llegeix el llibre de nou.

e: David reads the book of new. 7
e: David reads the book again. X
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From Word-based to Phrase-based models

f: En David llegeix el llibre nou.

e: David reads the new book. X

f: En David llegeix el llibre de nou.

e: David reads the book of new. 7
e: David reads the book again. X

Some sequences of words usually translate together.

Approach: take sequences (phrases) as translation units.
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What can be achieved with phrase-based models
(as compared to word-based models)

Allow to translate from several to several words and
not only from one to several.

Some local and short range context is used.

Idioms can be catched.
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NULL Quan tornes a casa ?

When are you coming back home ?

With the new translation units, P(f |e) can be obtained
following the same strategy as for word-based models with
few modifications:

1 Segment source sentence in phrases.

2 Translate each phrase into the target language.

3 Reorder the output.
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NULL Quan tornes a casa ?

When are you coming back home ?

With the new translation units, P(f |e) can be obtained
following the same strategy as for word-based models with
few modifications:

1 Segment source sentence in phrases.

2 Translate each phrase into the target language.

3 Reorder the output.
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NULL Quan tornes a casa ?

When are you coming back home ?

But...

Alignments need to be done at phrase level

Options

Calculate phrase-to-phrase alignments ⇒ hard!

Obtain phrase alignments from word alignments ⇒ how?
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Questions to answer:

How do we obtain phrase alignments from word
alignments?

And, by the way, what’s exactly a phrase?!

A phrase is a sequence of words consistent with word alignment.
That is, no word is aligned to a word outside the phrase.

But a phrase is not necessarily a linguistic element.

We do not use the term phrase here in its linguistic sense: a phrase can be any
sequence of words, even if they are not a linguistic constituent.
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Questions to answer:

How do we obtain phrase alignments from word
alignments?

And, by the way, what’s exactly a phrase?!

A phrase is a sequence of words consistent with word alignment.
That is, no word is aligned to a word outside the phrase.

But a phrase is not necessarily a linguistic element.1

We do not use the term phrase here in its linguistic sense: a phrase can be any
sequence of words, even if they are not a linguistic constituent.
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Phrase extraction through an example:

Quan tornes tu a casa ?

When
are
you

coming

back

home

?

(Quan tornes, When are you coming back)
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Phrase extraction through an example:

Quan tornes tu a casa ?

When
are
you

coming

back

home

?

(Quan tornes, When are you coming back)

(Quan tornes tu, When are you coming back)
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Quan tornes a casa ?

When
are
you

coming

back

home

?

Intersection

(Quan, When) (Quan tornes, When are you coming) (Quan tornes a casa, When

are you coming back home) (Quan tornes a casa ?, When are you coming back

home ?) (tornes, coming) (tornes a casa, coming back home) (tornes a casa ?,

coming back home ?) (casa, home) (casa ?, home ?) (?, ?) 10 phrases



SMT, components
The translation model P(f |e)

Quan tornes a casa ?

When
are
you

coming

back

home

?

Intersection

(Quan, When) (Quan tornes, When are you coming) (Quan tornes a casa, When

are you coming back home) (Quan tornes a casa ?, When are you coming back

home ?) (tornes, coming) (tornes a casa, coming back home) (tornes a casa ?,

coming back home ?) (casa, home) (casa ?, home ?) (?, ?) 10 phrases



SMT, components
The translation model P(f |e)

Quan tornes a casa ?

When
are
you

coming

back

home

?

Intersection

(Quan, When) (Quan tornes, When are you coming) (Quan tornes a casa, When

are you coming back home) (Quan tornes a casa ?, When are you coming back

home ?) (tornes, coming) (tornes a casa, coming back home) (tornes a casa ?,

coming back home ?) (casa, home) (casa ?, home ?) (?, ?) 10 phrases



SMT, components
The translation model P(f |e)

Quan tornes a casa ?

When
are
you

coming

back

home

?

Intersection

(Quan, When) (Quan tornes, When are you coming) (Quan tornes a casa, When

are you coming back home) (Quan tornes a casa ?, When are you coming back

home ?) (tornes, coming) (tornes a casa, coming back home) (tornes a casa ?,

coming back home ?) (casa, home) (casa ?, home ?) (?, ?) 10 phrases



SMT, components
The translation model P(f |e)

Quan tornes a casa ?

When
are
you

coming

back

home

?

Intersection

(Quan, When) (Quan tornes, When are you coming) (Quan tornes a casa, When

are you coming back home) (Quan tornes a casa ?, When are you coming back

home ?) (tornes, coming) (tornes a casa, coming back home) (tornes a casa ?,

coming back home ?) (casa, home) (casa ?, home ?) (?, ?) 10 phrases



SMT, components
The translation model P(f |e)

Quan tornes a casa ?

When
are
you

coming

back

home

?

Intersection

(Quan, When) (Quan tornes, When are you coming) (Quan tornes a casa, When

are you coming back home) (Quan tornes a casa ?, When are you coming back

home ?) (tornes, coming) (tornes a casa, coming back home) (tornes a casa ?,

coming back home ?) (casa, home) (casa ?, home ?) (?, ?) 10 phrases



SMT, components
The translation model P(f |e)

Quan tornes a casa ?

When
are
you

coming

back

home

?

Intersection

(Quan, When) (Quan tornes, When are you coming) (Quan tornes a casa, When

are you coming back home) (Quan tornes a casa ?, When are you coming back

home ?) (tornes, coming) (tornes a casa, coming back home) (tornes a casa ?,

coming back home ?) (casa, home) (casa ?, home ?) (?, ?) 10 phrases



SMT, components
The translation model P(f |e)

Quan tornes a casa ?

When
are
you

coming

back

home

?

Intersection

(Quan, When) (Quan tornes, When are you coming) (Quan tornes a casa, When

are you coming back home) (Quan tornes a casa ?, When are you coming back

home ?) (tornes, coming) (tornes a casa, coming back home) (tornes a casa ?,

coming back home ?) (casa, home) (casa ?, home ?) (?, ?) 10 phrases



SMT, components
The translation model P(f |e)

Quan tornes a casa ?

When
are
you

coming

back

home

?

Intersection

(Quan, When) (Quan tornes, When are you coming) (Quan tornes a casa, When

are you coming back home) (Quan tornes a casa ?, When are you coming back

home ?) (tornes, coming) (tornes a casa, coming back home) (tornes a casa ?,

coming back home ?) (casa, home) (casa ?, home ?) (?, ?) 10 phrases



SMT, components
The translation model P(f |e)

Quan tornes a casa ?

When
are
you

coming

back

home

?

Intersection

(Quan, When) (Quan tornes, When are you coming) (Quan tornes a casa, When

are you coming back home) (Quan tornes a casa ?, When are you coming back

home ?) (tornes, coming) (tornes a casa, coming back home) (tornes a casa ?,

coming back home ?) (casa, home) (casa ?, home ?) (?, ?) 10 phrases



SMT, components
The translation model P(f |e)

Quan tornes a casa ?

When
are
you

coming

back

home

?

Union

(Quan, When) (Quan tornes, When are) (Quan tornes, When are you coming) (Quan

tornes, When are you coming back) (Quan tornes a casa, When are you coming

back home) ... (tornes a casa ?, are you coming back home ?) (casa,

home) (casa ?, home ?) (?, ?) 21 phrases
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Phrase extraction

The number of extracted phrases depends on the
symmetrisation method.

I Intersection: few precise phrases.

I Union: lots of (less?) precise phrases.

Usually, neither intersection nor union are used, but
something in between.

I Start from the intersection and add points belonging to
the union according to heuristics.
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Phrase extraction

For each phrase-pair (fi , ei), P(fi |ei) is estimated by
frequency counts in the parallel corpus.

The set of possible phrase-pairs conforms the set of
translation options.

The set of phrase-pairs together with their probabilities
conform the translation table.
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Translation model: keep in mind

Statistical TMs estimate the probability of a translation
from a parallel aligned corpus.

Its quality depends on the quality of the obtained word
(phrase) alignments.

Within an SMT system, it contributes to select
semantically adequate sentences in the target language.
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Decoder

T (f ) = ê = argmaxe P(e) P(f |e)

Responsible for the search in the space of possible translations.

Given a model (LM+TM+...), the decoder constructs the
possible translations and looks for the most probable one.

In our context, one can find:

Greedy decoders. Initial hypothesis (word by word

translation) refined iteratively using hill-climbing heuristics.

Beam search decoders.
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Decoder

T (f ) = ê = argmaxe P(e) P(f |e)

Responsible for the search in the space of possible translations.

Given a model (LM+TM+...), the decoder constructs the
possible translations and looks for the most probable one.

In our context, one can find:

Greedy decoders. Initial hypothesis (word by word

translation) refined iteratively using hill-climbing heuristics.

Beam search decoders. Let’s see..
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Core algorithm

Collect translation options

Initial state: empty hypothesis

Expand hypotheses with all translation options

Estimate the cost for each hypothesis

all source words are covered
NO

YES

Return translation: hypothesis with the lowest cost
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Example: Quan tornes a casa

Translation options:

(Quan, When)
(Quan tornes, When are you coming back)
(Quan tornes a casa, When are you coming back home)
(tornes, come back)
(tornes a casa, come back home)
(a casa, home)
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Example: Quan tornes a casa

Translation options:

(Quan, When)
(Quan tornes, When are you coming back)
(Quan tornes a casa, When are you coming back home)
(tornes, come back)
(tornes a casa, come back home)
(a casa, home)

Notation for hypotheses in construction:

Constructed sentence so far: come back

Source words already translated: - x - -
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Translation options:

(Quan, When)
(Quan tornes, When are you coming back)
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(tornes, come back)
(tornes a casa, come back home)
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Notation for hypotheses in construction:

Constructed sentence so far: come back
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Example: Quan tornes a casa

Translation options:

(Quan, When)
(Quan tornes, When are you coming back)
(Quan tornes a casa, When are you coming back home)
(tornes, come back)
(tornes a casa, come back home)
(a casa, home)

Initial hypothesis

Constructed sentence so far: φ
Source words already translated: - - - -
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φ
- - - -
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φ
- - - -

home|

- - x x

come back home|

- x x x

come back|

- x - -

When are you coming back home

*x x x x*

When are you coming back|

x x - -

When|

x - - -
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φ
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- - x x

come back home|

- x x x

come back|

- x - -

When are you coming back home

*x x x x*

When are you coming back|

x x - -

When|

x - - -
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come back home|

- x x x
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x x - -
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x - - - When|come back

x x - -
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φ
- - - -

home|

- - x x

come back home|

- x x x

come back|

- x - -

When are you coming back home

*x x x x*

When are you coming back|

x x - -

When|

x - - - When|come back

x x - -
When|come back|home

*x x x x*

When|come back home

*x x x x*
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φ
- - - -

home|

- - x x home|when

x - x x
home|when|come back

*x x x x*

home|come back

- x x x
home|come back|when

*x x x x*

come back home|

- x x x
come back home|when

*x x x x*

come back|

- x - - come back|when

x x - -
come back|when|home

*x x x x*

come back|home

- x x x
come back|home|when

*x x x x*

When are you coming back home

*x x x x*

When are you coming back|

x x - -
When are you coming back|home

*x x x x*

When|

x - - - When|come back

x x - -
When|come back|home

*x x x x*

When|come back home

*x x x x*
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Exhaustive search

As a result, one should have an estimation of the cost of each
hypothesis, being the lowest cost one the best translation.

But...

The number of hypotheses is exponential with the number of
source words.
(30 words sentence ⇒ 230 = 1, 073, 741, 824 hypotheses!)

Solution

Optimise the search by:

I Hypotheses recombination
I Beam search and pruning
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SMT, components
A beam-search decoder

Hypotheses recombination

Combine hypotheses with the same source words translated,
keep that with a lower cost.

When|come back home

x x x x
⇐⇒ When|come back|home

x x x x

Risk-free operation. The lowest cost translation is still
there.

But the space of hypothesis is not reduced enough.
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A beam-search decoder

Hypotheses recombination

Combine hypotheses with the same source words translated,
keep that with a lower cost.

When|come back home

x x x x
⇐⇒ When|come back|home

x x x x

Risk-free operation. The lowest cost translation is still
there.

But the space of hypothesis is not reduced enough.



SMT, components
A beam-search decoder

Beam search and pruning (at last!)

Compare hypotheses with the same number of translated
source words and prune out the inferior ones.

What is an inferior hypothesis?

The quality of a hypothesis is given by the cost so far and
by an estimation of the future cost.

Future cost estimations are only approximate, so the
pruning is not risk-free.



SMT, components
A beam-search decoder

Beam search and pruning (at last!)

Strategy:

Define a beam size (by threshold or number of
hypotheses).

Distribute the hypotheses being generated in stacks
according to the number of translated source words, for
instance.

Prune out the hypotheses falling outside the beam.

The hypotheses to be pruned are those with a higher
(current + future) cost.



SMT, components
Decoder

Decoding: keep in mind

Standard SMT decoders translate the sentences from left
to right by expanding hypotheses.

Beam search decoding is one of the most efficient
approach.

But, the search is only approximate, so, the best
translation can be lost if one restricts the search space
too much.
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SMT, the log-linear model
Motivation

Maximum likelihood (ML)

ê = argmaxeP(e|f ) = argmaxe P(e) P(f |e)

Maximum entropy (ME)

ê = argmaxeP(e|f ) = argmaxe exp
{∑

λm hm(f , e)
}

ê = argmaxe log P(e|f ) = argmaxe

∑
λm hm(f , e)

Log-linear model
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SMT, the log-linear model
Motivation

Maximum likelihood (ML)

ê = argmaxeP(e|f ) = argmaxe P(e) P(f |e)

Maximum entropy (ME)

ê = argmaxe log P(e|f ) = argmaxe

∑
λm hm(f , e)

Log-linear model with

h1(f , e) = logP(e), h2(f , e) = logP(f |e), and λ1 = λ2 = 1

⇒ Maximum likelihood model



SMT, the log-linear model
Motivation

What can achieved with the log-linear model
(as compared to maximum likelihood model)

Extra features hm can be easily added...

... but their weight λm must be somehow determined.

Different knowledge sources can be used.



SMT, the log-linear model
Features

State of the art feature functions

Eight features are usually used: P(e), P(f |e), P(e|f ), lex(f |e),

lex(e|f ), ph(e), w(e) and Pd(e, f ).

Language model P(e)
P(e): Language model probability as in ML model.

Translation model P(f |e)
P(f |e): Translation model probability as in ML model.

Translation model P(e|f )
P(e|f ): Inverse translation model probability to be added
to the generative one.
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State of the art feature functions

Eight features are usually used: P(e), P(f |e), P(e|f ), lex(f |e),

lex(e|f ), ph(e), w(e) and Pd(e, f ).

Translation model lex(f |e)
lex(f |e) : Lexical translation model probability.

Translation model lex(e|f )
lex(e|f ): Inverse lexical translation model probability.

Phrase penalty ph(e)
ph(e): A constant cost per produced phrase.



SMT, the log-linear model
Features

State of the art feature functions

Eight features are usually used: P(e), P(f |e), P(e|f ), lex(f |e),

lex(e|f ), ph(e), w(e) and Pd(e, f ).

Word penalty w(e)
w(e): A constant cost per produced word.

Distortion Pd(e, f )
Pd(iniphrasei

, endphrasei−1
): Relative distortion probability

distribution. A simple distortion model:
Pd(iniphrasei

, endphrasei−1
) = α|iniphrasei

− endphrasei−1
− 1|



SMT, the log-linear model
Weights optimisation

Development training, weights optimisation

Supervised training: a (small) aligned parallel corpus is
used to determine the optimal weights.

Strategies

Generative training. Optimises ME objective function which

has a unique optimum. Maximises the likelihood.

Discriminative training only for feature weights (not

models), or purely discriminative for the model as a whole.

This way translation performance can be optimised.

Minimum Error-Rate Training (MERT).
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used to determine the optimal weights.

Strategies

Generative training. Optimises ME objective function which

has a unique optimum. Maximises the likelihood.

Discriminative training only for feature weights (not

models), or purely discriminative for the model as a whole.

This way translation performance can be optimised.

Minimum Error-Rate Training (MERT).



SMT, the log-linear model
Minimum Error-Rate Training (MERT)

Minimum Error-Rate Training

Approach: Minimise an error function.

But... what’s the error of a translation?

There exist several error measures or metrics.

Metrics not always correlate with human judgements.

The quality of the final translation on the metric choosen
for the optimisation is shown to improve.

For the moment, let’s say we use BLEU.

(More on MT Evaluation section)



SMT, the log-linear model
Minimum Error-Rate Training (MERT)

Minimum Error-Rate Training rough algorithm

λi initialisation

Select a direction k , fix λi 6= λk

Best λk (line minimisation)

all k explored?
NO

YES

λi stable?
NO

YES

Optimal λi



SMT, the log-linear model
The log-linear model

Log-linear model: keep in mind

The log-linear model allows to include several weighted
features. State of the art systems use 8 real features.

The corresponding weights are optimised on a
development set, a small aligned parallel corpus.

An optimisation algorithm such as MERT is appropriate
for at most a dozen of features. For more features, purely
discriminative learnings should be used.

For MERT, the choice of the metric that quantifies the
error in the translation is an issue.
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SMT, beyond standard SMT
Including linguistic information

Considering linguistic information in phrase-based models

Phrase-based log-linear models do not consider linguistic
information other than words. This is information should
be included.

Options

Use syntactic information as pre- or post-process (for
reordering or reranking for example).

Include linguistic information in the model itself.

I Factored translation models.

I Syntactic-based translation models.



SMT, beyond standard SMT
Factored translation models

Factored translation models

Extension to phrase-based models where every word is substi-

tuted by a vector of factors.

(word) =⇒ (word, lemma, PoS, morphology, ...)

The translation is now a combination of pure translation (T)
and generation (G) steps:



SMT, beyond standard SMT
Factored translation models

Factored translation models

Extension to phrase-based models where every word is substi-

tuted by a vector of factors.

(word) =⇒ (word, lemma, PoS, morphology, ...)

The translation is now a combination of pure translation (T)
and generation (G) steps:

lemmaf PoSf morphologyf wordf

lemmae PoSe morphologye worde

T T T
G



SMT, beyond standard SMT
Factored translation models

Factored translation models

Extension to phrase-based models where every word is substi-

tuted by a vector of factors.

(word) =⇒ (word, lemma, PoS, morphology, ...)

The translation is now a combination of pure translation (T)
and generation (G) steps:

casaf NNf fem., pluralf casesf

housee NNe plurale housese

T T T
G



SMT, beyond standard SMT
Factored translation models

What differs in factored translation models
(as compared to standard phrase-based models)

The parallel corpus must be annotated beforehand.

Extra language models for every factor can also be used.

Translation steps are accomplished in a similar way.

Generation steps imply a training only on the target side
of the corpus.

Models corresponding to the different factors and
components are combined in a log-linear fashion.



SMT, beyond standard SMT
Syntactic translation models

Syntactic translation models

Incorporate syntax to the source and/or target languages.

Approaches

Syntactic phrase-based based on tree trasducers:

I Tree-to-string. Build mappings from target parse trees
to source strings.

I String-to-tree. Build mappings from target strings to
source parse trees.

I Tree-to-tree. Mappings from parse trees to parse trees.



SMT, beyond standard SMT
Syntactic translation models

Syntactic translation models

Incorporate syntax to the source and/or target languages.

Approaches

Synchronous grammar formalism which learns a grammar
that can simultaneously generate both trees.

I Syntax-based. Respect linguistic units in translation.

I Hierarchical phrase-based. Respect phrases in
translation.



SMT, beyond standard SMT
Syntax-based translation models

Syntactic models ease reordering. An intuitive example:

En David llegeix un llibre nou

S

NP

PP

En

NN

David

V

llegeix
VP

DT

el

NN

llibre

PP

nou

S

NP

NN

V

VP

DT PP NN
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SMT, beyond standard SMT
Syntax-based translation models

Syntactic models ease reordering. An intuitive example:

En David llegeix un llibre nou

S

NP

PP

En

NN

David

V

llegeix
VP

DT

el

NN

llibre

PP

nou

S

NP

NN

David

V

reads
VP

DT

a

PP

new

NN

book

David reads a new book



SMT, beyond standard SMT
Ongoing research

Hot research topics

Current research on SMT addresses known and new problems.

Some components of the standard phrase-based model are still
under study:

Automatic alignments.

Language models and smoothing techniques.

Parameter optimisation.



SMT, beyond standard SMT
Ongoing research

Complements to a standard system can be added:

Reordering as a pre-process or post-process.

Reranking of n-best lists.

OOV treatment.

Domain adaptation.



SMT, beyond standard SMT
Ongoing research

Development of full systems from scratch or modifications to
the standard:

Using machine learning.

Including linguistic information.

Hybridation of MT paradigms.

Or a different strategy:

Systems combination.



SMT, beyond standard SMT
Including linguistic information

Beyond standard SMT: keep in mind

Factored models include linguistic information in phrase-
based models and are suitable for morphologically rich
languages.

Syntactic models consider somehow syntaxis and are
adequate for language pairs with a different structure of
the sentences.

Current research addresses both new models and
modifications to the existing ones.
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Implementation
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Unfruitful

results
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MT Evaluation
Automatic evaluation

What can achieved with automatic evaluation
(as compared to manual evaluation)

Automatic metrics notably accelerate the development
cycle of MT systems:

I Error analysis
I System optimisation
I System comparison

Besides, they are

Costless (vs. costly)

Objective (vs. subjective)

Reusable (vs. non-reusable)



MT Evaluation
Lexical similarity

Metrics based on lexical similarity
(most of the metrics!)

Edit Distance: WER, PER, TER

Precision: BLEU, NIST, WNM

Recall: ROUGE, CDER

Precision/Recall: GTM, METEOR, BLANC, SIA

Nowadays, BLEU is accepted as the standard metric.
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MT Evaluation
Lexical similarity

Limits of lexical similarity

The reliability of lexical metrics depends very strongly on the
heterogeneity/representativity of reference translations.

e: This sentence is going to be difficult to evaluate.

Ref1: The evaluation of the translation is complicated.
Ref2: The sentence will be hard to qualify.
Ref3: The translation is going to be hard to evaluate.
Ref4: It will be difficult to punctuate the output.

Lexical similarity is nor a sufficient neither a necessary condition so

that two sentences convey the same meaning.
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MT Evaluation
Ongoing researh

Recent efforts to go over lexical similarity

Extend the reference material:

Using lexical variants such as morphological variations or
synonymy lookup or using paraphrasing support.

Compare other linguistic features than words:

Syntactic similarity: shallow parsing, full parsing (constituents
/dependencies).

Semantic similarity: named entities, semantic roles, discourse
representations.

Combination of the existing metrics.
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MT Evaluation
Summary

MT Evaluation: keep in mind

Evaluation is important in the system development cycle.
Automatic evaluation accelerates significatively the
process.

Up to now, most (common) metrics rely on lexical
similarity, but it cannot assure a correct evaluation.

Current work is being devoted to go beyond lexical
similarity.



Thanks!
A last alignment

Gràciespa en JesúspGiménez per algunes transparències

Thankspto JesúspGiménez forp somepof the material
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SMT system
Software

Build your own SMT system

1 Language model with SRILM.
http://www.speech.sri.com/projects/srilm/download.htm

2 Word alignments with GIZA++.
http://code.google.com/p/giza-pp/downloads/list

3 And everything else with the Moses package.
http://sourceforge.net/projects/mosesdecoder

http://www.speech.sri.com/projects/srilm/download.html
http://code.google.com/p/giza-pp/downloads/list
http://sourceforge.net/projects/mosesdecoder/


SMT system
Steps

1. Download and prepare your data

1 Parallel corpora and some tools can be downloaded for
instance from the WMT 2010 web page:
http://www.statmt.org/wmt10/translation-task.html

How to construct a baseline system is also explained there:
http://www.statmt.org/wmt10/baseline.html

We continue with the Europarl corpus Spanish-to-English.

http://www.statmt.org/wmt10/translation-task.html
http://www.statmt.org/wmt10/baseline.html


SMT system
Steps

1. Download and prepare your data (cont’d)

1 a

2 Tokenise the corpus with WMT10 scripts.

(training corpus and development set for MERT)

wmt10scripts/tokenizer.perl -l es < eurov4.es-en.NOTOK.es >

eurov4.es-en.TOK.es

wmt10scripts/tokenizer.perl -l en < eurov4.es-en.NOTOK.en >

eurov4.es-en.TOK.en

wmt10scripts/tokenizer.perl -l es < eurov4.es-en.NOTOK.dev.es >

eurov4.es-en.TOK.dev.es

wmt10scripts/tokenizer.perl -l en < eurov4.es-en.NOTOK.dev.en >

eurov4.es-en.TOK.dev.en



SMT system
Steps

1. Download and prepare your data (cont’d)

1 a

2 a

3 Filter out long sentences with Moses scripts.

(Important for GIZA++)

bin/moses-scripts/training/clean-corpus-n.perl eurov4.es-en.TOK es

en eurov4.es-en.TOK.clean 1 100

4 Lowercase training and development with WMT10 scripts.

(Optional but recommended)

wmt10scripts/lowercase.perl < eurov4.es-en.TOK.clean.es >

eurov4.es-en.es

wmt10scripts/lowercase.perl < eurov4.es-en.TOK.clean.en >

eurov4.es-en.en



SMT system
Steps

2. Build the language model

1 Run SRILM on the English part of the parallel corpus or

on a monolingual larger one.

(tokenise and lowercase in case it is not)

ngram-count -order 5 -interpolate -kndiscount -text

eurov4.es-en.en -lm eurov4.en.lm



SMT system
Steps

3. Train the translation model

1 Use the Moses script train-factored-phrase-model.perl

This script performs the whole training:

cristina@cosmos:~$ train-factored-phrase-model.perl -help

Train Phrase Model

Steps: (--first-step to --last-step)

(1) prepare corpus

(2) run GIZA

(3) align words

(4) learn lexical translation

(5) extract phrases

(6) score phrases

(7) learn reordering model

(8) learn generation model

(9) create decoder config file
Obre

file:/usr/bin/train-factored-phrase-model.perl


SMT system
Steps

3. Train the translation model (cont’d)

1 So, it takes a few arguments (and a few time!):

bin/moses-scripts/training/train-factored-phrase-model.perl

-scripts-root-dir bin/moses-scripts/ -root-dir working-dir -corpus
eurov4.es-en -f es -e en -alignment grow-diag-final-and -reordering
msd-bidirectional-fe -lm 0:5:eurov4.en.lm:0

It generates a configuration file moses.ini needed to

run the decoder where all the necessary files are specified.



SMT system
Steps

4. Tuning of parameters with MERT

1 Run the Moses script mert-moses.pl

(Another slow step!)

bin/moses-scripts/training/mert-moses.pl eurov4.es-en.dev.es

eurov4.es-en.dev.en moses/moses-cmd/src/moses ./model/moses.ini

--working-dir ./tuning --rootdir bin/moses-scripts/

2 Insert weights into configuration file with WMT10 script:

wmt10scripts/reuse-weights.perl ./tuning/moses.ini <

./model/moses.ini > moses.weight-reused.ini



SMT system
Steps

5. Run Moses decoder on a test set

1 Tokenise and lowecase the test set as before.

2 Filter the model with Moses script.

(mandatory for large translation tables)

bin/moses-scripts/training/filter-model-given-input.pl

./filteredmodel moses.weight-reused.ini testset.es

3 Run the decoder:

moses/moses-cmd/src/moses -config ./filteredmodel/moses.ini

-input-file testset.es > testset.translated.en



MT Evaluation
Software

Evaluate the results

1 With BLEU scoring tool. Available as a Moses script or

from NIST:

http://www.itl.nist.gov/iad/mig/tools/mtevalv13a-

20091001.tar.gz

2 With IQmt package.
http://www.lsi.upc.edu/∼nlp/IQMT/

http://www.itl.nist.gov/iad/mig/tools/mtevaldiscretionary {-}{}{}v13adiscretionary {-}{}{}20091001.tar.gz
http://www.itl.nist.gov/iad/mig/tools/mtevaldiscretionary {-}{}{}v13adiscretionary {-}{}{}20091001.tar.gz
http://www.lsi.upc.edu/%7Enlp/IQMT/


MT Evaluation
Steps

1. Evaluate the results

1 With BLEU scoring tool in Moses:

moses/scripts/generic/multi-bleu.perl references.en <

testset.translated.en



MT Evaluation
Steps

2. Evaluate the results on-line

1 OpenMT Evaluation Demo

http://biniki.lsi.upc.edu/openMT/evaldemo.php

http://biniki.lsi.upc.edu/openMT/evaldemo.php
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