K. ANGELOV Typeful Ontologies with Direct
R. ENACHE Multilingual Verbalization

Abstract. = We developed a methodology for representation of ontologies in a strictly
typed language with dependent types. The methodology is supported by an experi-
ment where we translated SUMO(Suggested Upper-Merged Ontology) to GF(Grammatical
Framework). The representation of SUMO in GF preserves the expressivity of the orig-
inal ontology, adding to this the advantages of a type system and a built-in support for
natural language generation. SUMO is the largest open-source ontology describing over
10,000 concepts and the relations between them, along with a number of first-order ax-
ioms, which are further on used in performing automated reasoning on the ontology. GF
is a type-theoretical grammar formalism used for natural language applications. Through
the logical framework that it incorporates, GF allows a consistent ontology representation
and thanks to its grammatical features the ontology is directly verbalized in one or many
controlled natural languages.

Keywords: ontologies, type theory, knowledge representation, automated reasoning, natu-
ral language generation

1. Introduction

The constantly growing amount of formal knowledge has brought about the
necessity of a coherent and unambiguous representation of ontologies which
can further on be processed automatically. As a consequence a number of
ontology description languages like KIF [11], OWL [6], CycL [10] and Gellish
[27] has emerged. However, the focus in all these languages is on the knowl-
edge representation and consequently, they are mainly descriptive, leaving
tasks such as consistency checking or natural language generation to exter-
nal tools. Moreover, most languages are based on some kind of untyped
first-order logic with predicates which occasionally allows higher-order con-
structions. They aim to maximize the expressivity with the cost of allowing
set theoretical paradoxes to be expressed (Section 3). Also, because of the
lack of a type system, one can easily extend such an ontology with axioms
which are not well-formed. Although type information in these languages is
often provided in the form of logical assertions, the validation for correctness
is left to a reasoner which may or may not be able to find all problems. Even
with a complete and decidable reasoner, if the ontological language has the
open-world assumption, a potential problem might be left undiscovered, if
it is not stated explicitly that certain classes in the ontology are disjoint.
This is a problem when dealing with large coverage ontologies. For exam-

Studia Logica (2010) 0: 1-26 © Springer 2010

2 K. Angelov, R. Enache

ple, a predicate could be applied to an argument of wrong type, or a small
change in the signature of a function could lead to the update of all its oc-
curences. If all these checks are manual, then this is a resource-consuming
and error-prone process. In contrast, database systems are equipped with
rigid database schemas which ensure that the information is always kept
consistent. The programming languages community was also dealing with
that from the very beginning of the existence of computer science and de-
veloped many different type systems. Unfortunately this problem is largely
ignored in the ontology development community. We developed a method-
ology for encoding of ontologies in strictly typed language based on type
theory with dependent types. The methodology is supported with an ex-
periment with SUMO [17], the largest open-source ontology available today.
The implementation language of choice is GF [22].

SUMO consists of 2 upper-level ontologies (Merge, Mid-level-ontology)
describing general concepts, and 29 domain-specific ontologies for finances
(FinancialOntology), geographical concepts (Geography), and others. The
ontology is written in a dialect of KIF (Knowledge Interchange Format [11]),
called SUO-KIF, which permits the declaration of concepts in a human-
readable form, featuring support for expressing first-order predicate calculus
constructions. However, due to the modeling of the hierarchy in SUMO,
which treats functions and relations as ordinary concepts, it is possible to
express second-order logic constructions in SUO-KIF, such as quantification
over functions and relations.

The SUMO ontology has natural language translations for the Merge
module in English, Arabic, Mandarin Chinese, Czech, French, German,
Hindi, Italian, Romanian and Tagalog. The translations are based on a
set of string templates, which are combined by concatenation. They are
hand-written and cover the ontology partially. Unfortunately the templates
are not expressive enough to handle various natural language phenomena
such as case and gender agreement or phonetic mutations. We will show
how these problems were solved by using GF.

GF is a type-theoretical grammar formalism which distinguishes between
abstract and concrete syntax. The abstract syntax is a logical framework
based on Martin Lo6f’s type theory [16], in which the application domain can
be described in an abstract language-neutral manner. The concrete syntax
is a mapping of the abstract syntax into some concrete natural language.
Since it is possible to have multiple concrete syntaxes, linked to the same
abstract syntax, the abstract syntax acts as a semantic interlingua which
allows simultaneous translation into multiple concrete languages.

We consider the abstract syntax of GF as a kind of ontology description

Typeful Ontologies with Direct Multilingual Verbalization 3

language and translate some of the axioms from SUMO to statements in the
abstract syntax of a grammar. Other axioms, those related to the natural
language generation from SUMO, are used to generate the concrete syntax.
The rest of the axioms are just converted to abstract syntax trees and used
in the automated theorem prover for reasoning.

The development of a grammar for a new domain from scratch would in-
volve an ad hoc implementation for low-level linguistic details such as word
order, agreement, etc. This is simplified by using the resource grammar
library[23] developed in GF. The library provides an abstract syntax for the
common general-purpose natural language constructions and concrete syn-
taxes corresponding to 16 languages. The usage of the library ensures that
the rendering is always syntactically correct and reduces the development
effort for new application grammars. The resource grammar library was
used for the generation of the concrete syntax of SUMO.

Another advantage of GF is the portability of the grammars, via PGF[3]
— a runtime binary format, which can be used by applications written in
Haskell, Java, JavaScript, C and Python - through the GF runtime system.
In this way, the GF grammars can be embedded in user applications. GF has
been used in various large-scale projects such as the dialogue system research
project TALK [13], the educational project WebALT [9], the verification tool
KeY([2], and the project in multilingual translation MOLTO[1].

Regarding the automated reasoning and the checking for consistency
[19], SUMO was mapped to TPTP-FOF[25], a standard untyped first-order
logic language, which is accepted by most theorem provers. There is an
annual competition held during the the premier conference in automated
deduction, CADE*, which awards prizes for finding inconsistencies in one of
the two upper ontologies from SUMO, based on these mappings’. Similar
translation from SUMO-GF to TPTP is provided. The translated ontology
is checked for consistency and is used for making inferences, with the aid of
an automated theorem prover (Section 6).

SUMO is also associated with a knowledge engineering environment —
Sigma [18], which can be used for intelligent browsing of the ontology, op-
timized natural language generation and automated reasoning [26]. An al-
ternative system with similar capabilities is the KSMSA browserf. The web
user interface of GF also evolved in the direction of ontology browsing. While
this interface is still in development we will give an overview of it in Section

*http://www.cadeinc.org/
Thttp://www.cs.miami.edu/ tptp/Challenges/SUMOChallenge/
http://virtual.cvut.cz/ksmsaWeb /main

4 K. Angelov, R. Enache

From the total number of ontologies that SUMO provides, 17 were trans-
lated into GF. These are: Merge and Mid-level-ontology — the upper on-
tologies and CountriesAndRegions, Communications, Economy, Elements,
Engineering, FinancialOntology, Geography, Government, Military, Mon-
dial, QoSOntology, Transportation, WorldAirportsA-K, WorldAirportsL-Z
and WMD. The remaining ontologies can also be ported to GF using the
same techniques, in a semi-automatic way.

The advantages of representing the SUMO ontology in GF are the pos-
sibility to type check the axioms and the definitions at an early stage and
also to generate natural language of a higher quality. The translation to GF,
is also an in-depth analysis on SUMO and the possible problems that the
absence of a type system could bring about.

2. The Abstract Syntax of SUMO-GF

The two languages SUO-KIF and GF have been created for different pur-
poses and have evolved in different ways. It is not surprising that the trans-
lation of SUMO from SUO-KIF to an abstract syntax in GF is not trivial.
Still, we will show that the different ontological concepts - from classes and
taxonomical relations to complex logical axioms have natural representations

in GF.

2.1. The Taxonomy

The most central component of every ontology is the taxonomy of classes,
and this is the starting point from where we begin the ontology modeling in
GF.

Knowledge representation languages like OWL, KIF and CycL do not
set a sharp border between classes and instances. In fact, the classes are
just instances of one special class which is the class of all classes. In SUMO
the special class is called Class and there is a predicate subclass which is
used to assert the taxonomical relations. For example, the axiom:

(subclass Human Hominid) (1)

asserts that the class Human is a subclass of Hominid. Furthermore, there
is an axiom stating that everything that is a subclass of Entity is also an

Typeful Ontologies with Direct Multilingual Verbalization)

instance of Class and vica versa:

(<=> (instance ?CLASS Class)
(subclass 7CLASS Entity))

Since the subclass relation is transitive and Entity is the most general class,
from the axiom:

(subclass Class SetOrClass)
it follows that Class is itself an instance of Class:
(instance Class Class)

This kind of cyclic relations were proven to be inconsistent because they
lead to different kinds of paradoxes (section 3). The other two popular
languages OWL and CycL are not exceptions and similar examples could be
constructed in them as well. This seems to be a common mistake because
the first version of Martin Lof’s [15] type theory suffered from the same
inconsistency which was first demonstrated with Girard’s paradox [12]. The
problem was resolved in the later versions of the theory [16] by introducing
the concepts of small and big types. In the context of SUMO, this would
be translated as a restriction which states that Class cannot be an instance
of Class because it is too big to fit as an instance of itself. The abstract
syntax of GF is a logical framework consistent with the modern type theory,
so if we want to model ontologies like SUMO in GF we have to resolve the
conflict somehow.

GF distinguishes between values and types. Every value belongs to some
type but none of the types could be a value as well, so it is not possible for
a type to belong to another type. The solution for the cyclic relation in
SUMO is to declare that Class is a type:

cat Class;
Now the classes will be values of type Class. For instance:

fun Entity : Class;
Hominid : Class;

Human : Class;

Essentially, we cut the class Class from the common hierarchy and move it
to another level (also known as universe in type theory).

6 K. Angelov, R. Enache

Once we have a way to define classes in the abstract syntax we could
also define the taxonomy. In SUMO, the taxonomy is encoded by using the
subclass predicate. In GF, we can translate subclass either as a function
or as a type. Since we want to be able to statically check the axioms for
well-formedness we choose to represent the predicate as a type:

cat SubClass Class Class;
then the human-hominid relation could be asserted as:
fun Human_Class : SubClass Human Hominid, (2)

Here, the SubClass type is an example of a dependent type. The dependent
types are not just simple identifiers but have in addition indices of some
type. In this case, SubClass is a type indexed by two values of type Class.
In the case of Human_Class those are Human and Hominid.

Note that while in the original SUMO axiom (1) we had just a logical
assertion, in GF we have to assign an unique identifier (Human_Class) to
it. In type theory this is deeply rooted in Curry-Howard’s correspondence,
but it is interesting that a similar kind of “labeling” of assertions is now
emerging in OWL via the Named Graphs standard [28].

Semantically the subclass predicate in SUMO encodes the reflexive tran-
sitive closure of the taxonomic relation while the immediate subclass relation
is encoded using the predicate immediateSubclass. To take this into account
we define one more type:

cat Inherits Class Class;

Strictly speaking the SubClass type is the translation of the predicate
immediateSubclass and Inherits is the translation of subclass. However we
choose to read simple subclass axioms such as (1) as assertions for immediate
subclassing and thus the conversion tool will generate the SubClass type in
GF. The reason for this is that this would let us do some reasoning with
the ontology by using only the tools that are already available in GF. Our
intuition is that this still preserves the principal information from SUMO.

From the atomic SubClass axioms we can easily infer the transitive clo-
sure Inherits. All that is needed is to add two inference rules. The inference
rules in type theory are nothing else but functions with some specific type
signatures:

fun inhz : (¢ : Class) — Inherits c c;
inhs : (c1, o, c3 : Class) — SubClass c1 ¢y

— Inherits cy c3 — Inherits ¢ cs;

Typeful Ontologies with Direct Multilingual Verbalization 7

The type of function inhz states that every class ¢ inherits itself i.e. this
is the reflexivity axiom. The second function inhs expresses the transitivity
over SubClass i.e. if ¢; is a subclass of ¢ and ¢y inherits cg then ¢y inherits
C3.

The inference rules can be applied using the inference engine built into
GF. For example from the GF shell the user can use the gt command to
generate an expression of a given type:

SUMO> gt -cat="Inherits Human Hominid"
(inhs Human Hominid Hominid Human_Class (inhz Hominid))

In type theory the types are seen as logical propositions and the existence
of a value of a given type is interpreted as an evidence for the validity of
the proposition. The value is also a constructive receipe for building the
proof from the axioms in the theory. In section 2.4 we will use it to generate
explanations in natural language for the proofs.

Some of the classes in SUMO has two or more superclasses. For instance
Human is both a CognitiveAgent and a Hominid. In other situations it is
necessary to quantify over instances of the union of two or more classes. For
that purpose we added two of the primitive operations from description logic
— intersection and union of classes:

fun both : Class — Class — Class; — intersection

either : Class — Class — Class; — union
With the help of these primitives the full definition of the class Human is:

fun Human_Class : SubClass Human (both CognitiveAgent Hominid);
(3)

The reasoning with these two new primitives can be axiomatized with three
new inference rules:

fun bothL : (¢1,c2 : Class) — SubClass (both ¢1 ¢2) c1;
bothR : (c1, ¢y : Class) — SubClass (both ¢ c2) c3;
eitherC' : (c1, ca, c3 : Class) —

SubClass ¢; ¢3 — SubClass ca c3 — SubClass (either c; c2) c3;

The first two state that the intersection class of any two classes ¢; and co is
a subclass of both ¢; (function bothL) and ¢y (function bothR). The third
function (eitherC) states that if two classes ¢; and ¢ are both subclasses of

8 K. Angelov, R. Enache

c3 then their union class is also a subclass of c3. Now, with the extended
definition for Human (3), the proof that every Human is a kind of Hominid
will use the function bothR:

SUMO> gt -cat="Inherits Human Hominid"

(inhs Human (both CognitiveAgent Hominid) Hominid Human_Class
(inhs (both CognitiveAgent Hominid) Hominid Hominid

(bothR CognitiveAgent Hominid) (inhz Hominid)))

At least in some cases the criterion which distinguishes the members of
a given class from the super class is formally specified. In this case the
criterion is specified in SUMO as an axiom. In our encoding we found it
handy to use an encoding which uses the KappaFn function. KappaFn is a
function in SUMO which takes a logical formula and returns the class of all
instances for which the formula is valid. The type of the function in GF is:

fun KappaFn : (c: Class) — (Var ¢ — Formula) — Class; (4)

It takes as arguments the superclass ¢ and the logical formula and returns
the subclass. The type (Var ¢ — Formula) indicates that the argument itself
is a function which takes a variable of class ¢ and returns a formula. Every
instance of ¢ for which the formula is true is also a member of the new sub-
class. Using KappaFn it is trivial to define the class NegativeRealNumber
as a subclass of RealNumber:

fun NegativeRealNumber : Class;
def NegativeRealNumber = KappaFn RealNumber (\N — lessThan ...);

Again for the inference of the transitive closure to work we need an inference
rule:

fun kappa : (¢ : Class) — (p: Var ¢ — Formula) —
SubClass (KappaFn c p) ¢;

which defines the semantics of KappaFn i.e. that the new class is a subclass
of the argument of the function.
2.2. Instances

Once we have the taxonomy of the ontology we can proceed with adding
some instances. Similarly with the classes we will distinguish between direct

Typeful Ontologies with Direct Multilingual Verbalization 9

instances of a class and generalized instances. The instances will be defined
as values of one of following types:

cat EIl Class;
Ind Class;

The type Ind c is assigned to all instances with principal class ¢, while EI ¢
is the type of all direct instances of ¢ together with the instances of its
subclasses. There is an injection between this two types:

fun el : (c1, ¢ : Class) — Inherits ¢; co — Ind ¢; — EI ¢g;

The function el injects an instance with principal class ¢; into the type of
the generalized instances of co, if there is an evidence that ¢ is a subclass of
¢y (the argument Inherits ¢; cz). For example in the CountriesAndRegions
module of SUMO there is an instace for the city of London:

fun LondonUnitedKingdom : Ind EuropeanCity;

The class EuropeanCity is a subclass of City so it is possible to do the
coercion. The following expression is the injection of LondonUnitedKingdom
into the generalized instances of Clity:

el EuropeanCity City
(inhs EuropeanCity City City EuropeanCity_Class (inhz City))
LondonUnitedKingdom

2.3. Functions, Predicates and Logical Formulas

In SUMO, all functions and predicates are represented as intances of a de-
scendent of Relation, and the expected classes of the arguments and the
result are stated as axioms in the ontology. For example the definition of
the AbsoluteValueFn function is:

(instance AbsoluteValueFn UnaryFunction)
(domain AbsoluteValueFn 1 RealNumber)
(range AbsoluteValueFn NonnegativeRealNumber)

Here the predicates domain and range specify the class of the first argument
and the class of the returned value. The class of AbsoluteValueFn itself is

10 K. Angelov, R. Enache

UnaryFunction which encodes the fact that this is a function with only one
argument. From this SUMO axioms we generate a type signature in GF:

fun AbsoluteValueFn : El RealNumber — Ind NonnegativeRealNumber;

Note that with our implementation we impose the closed world assump-
tion. The argument of AbsoluteValueFn is declared of type El RealNumber,
and the only way to construct a value of that type is to combine an instance
of some subclass ¢ of RealNumber with a proof object of type:

Inherits ¢ RealNumber

If this object cannot be constructed from the current state of the knowledge
base then the application of AbsoluteValueFn is not possible.

The predicates are declared in a way very similar to the functions. The
only difference is that while the functions return some instance, the predi-
cates are used to create logical formulas. In the original ontology, there is
already a class called Formula which represents the class of all well-formed
SUO-KIF formulas. In principle the predicates could return Ind Formula but
there are two reasons for which we choose not to do that. The first reason is
that if Formula is kept as a class then this would allow quantification over
logical formulas which is not supported in first-order logic. The second rea-
son is that when the logical axioms are translated to natural language then
Formula will correspond syntactically to sentence while Ind corresponds to a
noun phrase, and this would make the verbalization of the ontology difficult.
Instead we declared Formula as a type:

cat Formula;

The last piece that is needed to be able to write logical axioms in GF is
to add the standard logical quantifiers and connectives:

cat Var Class;

fun var : (c1,co : Class) — Inherits ¢y co — Var ¢; — El co;

fun exists : (¢ : Class) — (Var ¢ — Formula) — Formula;
forall : (c : Class) — (Var ¢ — Formula) — Formula,
fun not : Formula — Formula;

and, or, impl, equiv : Formula — Formula — Formula;

Typeful Ontologies with Direct Multilingual Verbalization 11

The only specific thing here is how the variables are introduced by the quan-
tifiers. The first argument of the quantifier (function exists or forall) is the
class over which the function quantifies. The second argument is the formula
over which it has scope. The quantified variable itself is a high-order argu-
ment of type Var c. This type plays a role similar to the role of El. While
the former denotes some known instance, for Var we neither known the in-
stance nor its principal class. This is reflected for example in the natural
language generation where the grammatical gender is deduced from the class
of the variable instead of from the instance itself. This special treatment of
variables allows the generation of more fluent natural language. Still the var
function allows the coercion from type Var to EL

With the usage of quantifiers and connectives all axioms from SUMO,
which were not already converted to type signatures in GF, can be converted
to abstract syntax trees. For example the SUO-KIF formula:

(=> (instance 7P Wading)
(exists (?W) (and (instance ?W BodyOfWater) (located 7P ?W))))

is converted to the following abstract syntax tree in GF:

forall Wading (\P — exists BodyOfWater (\W —
located (var P) (var W))) (5)
Note that this is more than just a syntactic conversion because the quan-

tifiers in GF expect explicit class information while in SUMO this is encoded
with instance predicates.

2.4. Proofs in Natural Language

As it was mentioned in section 2.1, the proofs in GF are explicitly represented
as abstract syntax trees. Since the abstract syntax trees could also have
linearizations in the concrete syntax, it is possible to render the proofs in
natural language. For example the following command in the GF shell:

SUMO> gt -cat="Inherits Human Primate" | 1 -lang=SUMOEng

will derive a proof for Inherits Human Primate and will linearize the proof
in English. The text contains some HTML tags, so when it is rendered in a
web browser it looks like a bullet list:

e human is a subclass of both cognitive agent and hominide
e hominide is a subclass of primate

The natural language rendering can be used to generate end-user explana-
tions for the inferences in the ontology.

12 K. Angelov, R. Enache

3. Russel’s paradox

Russel’s paradox was first discovered in the naive set theory. It stems from
the assumption that for every logical proposition there is a set of entities
which satisfy the proposition. This was shown to be incosistent with the
example of the set of all sets which are not members of themself. Such a
set cannot exist because then it will be simultaneously a member and not a
member of itself. The design of SUMO follows the naive set theory and the
KappaFn function is exactly the way to build sets from propositions. Using
the function, the paradox can be expressed as:

(instance (KappaFn ”x” (not (instance z x)))

(KappaFn ”x” (not (instance x x))))

The reasoning with SUMO is sound only because the KappaFn function
is not axiomatised and the automated theorem proovers cannot make any
inferences.

The paradox is principally avoided in the GF translation by first dis-
carding the predicate instance and second by making the class Class into
a type. This results into a completely different signature for KappaFn (4)
which would make the above statement incorrect even if we still had the
predicate instance.

4. Verbalization

Apart from the advantages that the GF type system provides, for the nat-
ural language generation the benefits of using GF are considerably more
substantial. The present work deals with the generation of natural language
for the two upper ontologies - Merge and Mid-level-ontology in 3 languages:
English, Romanian and French.

The manually built templates from SUMO were automatically coverted
to GF code with the help of the resource grammar libraries. For instance,
every template for English is parsed with the resource grammar extended
with an electronic version of Oxford Advanced Learner’s Dictionary. The
produced abstract syntax tree from the resource grammar is further con-
verted to a definition in the concrete syntax of the SUMO-GF grammar.
Similarly the class names were converted by relying on the camel case con-
vention used for classes in the ontology. An important side effect of this
conversion is that it leads to some generalizations. For example while the
original templates contain only the nominative/singular forms, in the conver-

Typeful Ontologies with Direct Multilingual Verbalization 13

sion, all other forms are automatically deduced by the usage of the grammar
and the dictionary.

For English, an approximate of 7,000 concepts and relations have been
translated to natural language. For Romanian and French, only a small
number of examples, that illustrate the limitations of the templates, were
built. This is due to the limitation that there are no large coverage lexicons

for those languages in GF yet.
A typical SUMO template is the predicate age expressed in English:

(format en age "the &%age of %1 is %n %2")

where %n will be replaced with "not” for the negation of the predicate,
and with the empty string for the affirmative form. The structure of the
templates is rather simple, and works reasonably just for morphologically
simple languages, such as English. The templates do not take into account
the presence of declension forms for nouns, of the gender agreement with
verbs and prepositions or the various moods of a sentence, depending on its
usage.

This solution is not compositional and leads to incorrect constructions
in languages with a rich morphology such as Romanian. For example the
verbalization of "the tangent of the square root of X” in Romanian would
require the combination of two templates and would render: tangenta lui
raddcina patratd a lui X, which is considerably different from the correct
form - tangenta radacinii patrate a lui X. One reason is that the translation of
”square root” should be in Genitive case, whereas the template only has the
Nominative one, and in Romanian the two forms are different. The second
is the matter of the possesive preposition, which in Romanian needs to agree
with its object. The template provides the masculine form as default, but
radacina pdtratd o lui X is feminine. For French, although nouns do not
have multiple declension forms, there is an agreement in gender and number
between nouns and other parts of speech that determines them, which cannot
be handled by the SUMO templates. In addition to this, for French there
is also the problem of phonetic mutations, such as for the usage of a verb
with negative polarity. In case that the verb starts with a vowel, the form of
the particles used to express negation changes, and this is a mutation that
SUMO doesn’t handle, because the templates provide only one value for the
particles. It goes without saying that the French and Romanian resource
grammars offer solutions for these problems, so that the natural language
generation in SUMO-GF is syntactically correct for compositions of patterns
also.

Moreover, the feature that shows best the advantage of a typed system in

14 K. Angelov, R. Enache

general, and of GF, in particular, over sets of templates is the assignment of
a gender to the variables, according to the gender of their type, for languages
that have gender agreement[21]. This is a very common feature for Romance
and Slavic languages, where there is a gender differentiation. The SUMO
templates simply assume that all the variables have masculine gender, while
in GF, the wrapper function var, that has access to the class of the variable
also, would assign a proper gender to the variable. Since variables can only
be used after being wrapped with var, they will have a correct gender for
any usage in a quantified formula. This behaviour shows the importance of
separating between variables and instances of a class. If Var and Ind or E1
would have been unified in the same category, we could not use a wrapper
function to change the gender, since we might accidentaly change the gender
of an ordinary instance.

An example of how the gender variation feature works in the current
implementation is the GF axiom:

forall Animal (\A — exists Animal (\B — smaller (varB) (varA)))

which would be linearized in French as:

pour chaque animal A il existe un animal B tel que B est plus petit
que A

where animal is of masculine gender in French. For a type of feminine
gender, such as house we would have that:

forall House (\A — exists House (\B — smaller (varB) (varA)))

which would be linearized in French as:

pour chaque maison A il existe une maison B telle que B est plus
petite que A

The axioms are not taken from SUMO, are just two examples that ilus-
trate this linguistic feature, and would not probably hold in general, as the
set of animals and the set of houses are finite, and hence noetherian.

The same feature of French also holds for Romanian, and shows clearly
that the SUMO templates would not generate satisfactory natural language
constructions even for non-nested templates, as previously shown. These is-
sues would make even harder and more error-prone the translation of SUMO
into other languages with a rich inflectional morphology, such as the Slavic
ones.

Besides axioms, we can also generate natural language for SubClass, Ind
declarations and higher-order functions. For example:

beverage is a subclass of food

Typeful Ontologies with Direct Multilingual Verbalization 15

blue is an instance of primary color.
7 15 equal to y” is an equivalence relation

Our work provides natural language generation in English for the two
biggest modules Merge and Mid-level-ontology and two domain specific: El-
ements - featuring chemical substances and Mondial - featuring countries
and cities of the world. A total of almost 7 000 objects and 500 relations
from SUMO were verbalized. This process is done automatically for objects
and semi-automatically for relations, and uses the GF resource grammar.

The automatic process takes advantage of the camel case representa-
tion of SUMO concepts. For example, BodyOfWater will be rendered as
"body of water” and parsed by GF as a noun phrase. Both instances and
classes are parsed as noun phrases. For functions and predicates the miss-
ing arguments are replaced by some dummy variables and the procedure
is semi-automatical, using the original SUMO templates and hand-written
verbalizations which are further on parsed as noun phrases for functions
and clauses with polarity for predicates. For example, the binary predicate
parent will be verbalized as "ol is the parent of 02” and parsed to a GF
abstract syntax tree. For the two domain specific ontologies, the information
is extracted from the SUMO predicate name that gives the English verbal-
ization of the concepts. As a result, our approach renders verbalization of a
large number of entries from the ontology, with a high rate of automation,
ensuring syntactical correctness of the generated phrases. For example :

For every unique list LIST, every positive integer NUMBER2 and every
positive integer NUMBER1, we have that if the element with number NUM-
BER1 in LIST is equal to the element with number NUMBER2 in LIST,
then NUMBER1 is equal to NUMBER2.

For the same axiom, the SUMO templates generate:

for all unique list ?LIST holds for all ’NUMBER1, ?NUMBER2 holds if
"h element of ?LIST” is equal to "h element of ?LIST”, then ?NUMBER1
s equal to ?NUMBER?2

The optimized natural language generation mechanism from the Sigma
system would render the axiom as:

* If a list is an instance of unique list
* then for all a positive integer and positive integer

o if positive integerth element of list is equal to positive integerth
element of list

o then positive integer is equal to positive integer §

$http://sigma.ontologyportal.org:4010/sigma/Browse.jsp

16 K. Angelov, R. Enache

Further optimizing of the code by anaphora generation and a list-like
structure of the arguments for better readibility is possible in GF too [8].

5. Evaluation

During the translation of SUMO to GF, we discovered a number of small in-
consistencies in the original ontologies like mismatches between instances and
classes, usage of undefined objects and usage of functions with a wrong num-
ber of arguments. This represents almost 8% of the total number of axioms
from SUMO and was determined automatically during the type checking
phase. In addition to this, we left out the higher-order logic constructions
such as quantifications on Formula or axioms with higher-order functions.

However, there are some types of axioms which could not be ported to
SUMO-GF, such as the ones that use quantification over classes, negative
type declarations and axioms which use the predicates subclass, range or
domain. In addition to this, we mention the class of axioms which feature
conditional type declarations. For example:

(=> (and (instance ?DRINK Drinking)
(patient ?DRINK ?BEV))
(instance ’BEV ?Beverage))

The type declaration for BEV appears as a consequence of the fact that it is
used in the process of Drinking. The total number of axioms which are lost
in translation is about 23%. Our observations suggests that those axioms
could be paraphrased and incorporated in the type system but this would
require manual work with every axiom.

6. Automated Reasoning in SUMO-GF

Since SUMO offers a generous amount of information in a first-order logic
format, it represents an excellent material for automated reasoning. As men-
tioned before, the TPTP-FOF translations of the 2 upper SUMO ontologies
are used yearly in the ATP competition. We have shown already in section
2 that a limited kind of ontological reasoning is possible by using GF alone.
Unfortunately the reasoner in GF is not as optimized as the current state
of the art theorem provers. However, to take advantage of the tools that
already exists, we translated the 17 SUMO-GF ontologies to TPTP-FOF,
checked them for consistency and used them for solving small inferences.

Typeful Ontologies with Direct Multilingual Verbalization 17

Since TPTP is an untyped system, whereas GF is strongly typed, the
information about types needs to be reformulated, with the aid of an addi-
tional predicate hasType, that ressembles the original instance predicate
from SUMO.

For subclasses, the translation reflects the possibility of coercing from
the subclass to the superclass:

(subclass Adjective Word)
which in GF was translated as:
fun Adjective_Class : SubClass Adjective Word,

and would be further on translated to TPTP as:

fof (axMerge2, axiom, (![X]:
(hasType(type_Adjective, X) => hasType(type_Word, X)))).

For instance declarations, we have a simpler translation pattern:
(instance Flat ShapeAttribute)

which is translated into GF as:
fun Flat : Ind ShapeAttribute;

will be translated to TPTP as:

fof (axMerge686, axiom,
hasType (type_ShapeAttribute, inst_Flat)).

A more commonly used approach for expressing typing declarations in first-
order logic is to create a predicate for each type, like:

type_ShapeAttribute (inst_Flat)

We did not choose this method, since the SUMO classes are not just used
as types, in typing declarations, but also as arguments for some functions.
By using classes as predicates, one couldn’t unify the two occurences in
first-order logic.

The functions that manipulate Formula objects, such as not, and,or,
impl and equiv have been translated into their corresponding first-order
logic operators that are predefined in TPTP: ~, &, | and =. For the both
and either constructors, the built-in & and | are used again:

fun Togo : Ind (both Country Nation);
will be translated to TPTP as:

18 K. Angelov, R. Enache

fof (axmond72, axiom,
hasType (type_Country, inst_Togo) &
hasType(type_Nation, inst_Togo)) .

As for the equality operator equal, the situation is more complicated.
In SUMO, because of the structure of the concepts, it could basically take
any arguments, like classes, and relations and instances. In GF, the equal
function would just take arguments of type El Entity, so it would not be
possible to test the equality of formulas, functions or classes. In SUMO,
equal is defined as an EquivalenceRelation, with some extra axioms, for the
various kinds of arguments that it might take. For instances, the axiom,
that verifies a property of equal objects:

(=> (equal ?7THING1 ?THING2)
(forall (?CLASS)
(<=> (instance ?THING1?CLASS)
(instance ?THING2 ?CLASS))))

could not be translated to GF, as it contains a variable type declaration and
quantification over a class. Moreover, a more solid interpretation of equality
would be using at least a congruence relation, not just an equivalence one.
SUMO does not have the concept of congruence, while theorem provers that
can process first-order logic with equality, usually have optimized treatment
of the built-in equality from TPTP. For these reasons, the translation from
GF to TPTP, uses the default TPTP equality for the equal function.

The existential and universal quantifiers from SUMO and GF, were trans-
lated as the built-in quantifiers from TPTP. The type declarations are ex-
pressed with the function hasType for consistency with the type declarations.
For example, the axiom (5) was translated to TPTP as:

fof (axMid9, axiom, ![Var_P]:
hasType(type_Wading, Var_P) => 7[Var_W]:
hasType (type_BodyOfWater, Var_W) & f_located(Var_P,Var_W)).

A special case is the translation of higher-order axioms to TPTP. In this
case, the function call is replaced by the definition of the function, rendering
a construction in first-order logic. It is the same approach as [19]. For
example:

CommutativeFunction Quantity Quantity (\x, y — AdditionFn x y);

will be translated to TPTP as:

Typeful Ontologies with Direct Multilingual Verbalization 19

fof (axM39, axiom, ![Var_x]:
hasType(type_Quantity, Var_x)=> ![Var_y]:
hasType (type_Quantity, Var_y) =>
f_AdditionFn(Var_x,Var_y) = f_AdditionFn(Var_y,Var_x)).

The resulting files have been checked with the automated theorem prover
for first-order logic E[24]. It is a multiple award-winner theorem prover
which is freely available and is based on equational superposition calculus. It
provides support for first-order logic with equality. E has been used to check
the consistency of the largest ontology currently available - ResearchCyC
[20]. The TPTP translations of the GF files were tested for consistency with
E, and no contradiction was found, given the time limit of 1 hour per file.

Regarding typical inferences that could be solved on the existing data, we
used the problems from the SUMO webpage Y. All these problems considered
were proved successfully within SUMO-GF.

There exist two available translations from the SUMO upper ontologies
to TPTP-FOF. Nested predicates and implicit or explicit quantifications
over Formula were not featured in this translation either. The function
KappaFn, which is a class-forming function that was used to build Russell’s
paradox, is not translated to TPTP from SUMO. For higher-order functions
and subrelations, the definitions are used as a macro, hence the second-order
constructions become first-order and can be used as axioms in TPTP.

The category of axioms that the SUMO to TPTP translation can ex-
press, but not SUMO-TPTP are mainly the ones that got lost in the SUMO
to SUMO-GF translation. The loss is almost 23% of the total number of
the axioms. The expressivity of the SUMO to GF to TPTP translation is
comparable to the direct SUMO to TPTP translation. It is worth men-
tioning that the first translation yields to a slightly slower system because
of the additional type declarations that need to be checked by the theorem
prover. However, It is worth investigating if the results could be better, if
one chooses the typed version of TPTP, which is currently in progressl.

7. End-user Interface

An important component of the GF distribution is the front-end user inter-
face. While the grammarians are supposed to use the GF shell plus some
development environment for writting grammars, the end users should have

Thttp://sigmakee.cvs.sourceforge.net /viewve/sigmakee/KBs /tests,/
Ihttp://www.cs.miami.edu/ tptp/TPTP/Proposals/Typed FOF .html

20 K. Angelov, R. Enache

the option to use some more comfortable interface. GF comes with a generic
web-based interface [7] which could be specialized further for particular ap-
plications. In relation with SUMO, the interface was extended with features
which make the relation of the ontology with the concrete syntax more trans-
parent.

While in Sigma the knowledge engineers are supposed to write the axioms
in KIF, in GF they could do it in controlled natural language. The problem
with all controlled languages is that the user has to learn how to write content
which is in the scope of the grammar. In GF there is an editor (fig. 1) which
guides the authoring by generation of suggestions. In the example on the
figure the user have just started adding reference to a variable and the editor
suggests the list of all variables in the current scope which start with “NU”.
The same kinds of suggestions are offered for every word in the sentence.
Furthermore, the user could at any time select a phrase (the highlighted
phrase on the picture) and see in the upper-right corner the corresponding
ontological type of the phrase (Class in this case). If the axiom is not well-
formed, i.e. contains type error for example, then the error is immediately
reported and the corresponding phrase is underlined. As a functionality this
very much resembles IDE for programming language except that the input
is a kind of natural language.

For nontrivial ontologies of the scale of SUMO it is often helpful to have
an overal view of the ontology. The browsing functionalities of Sigma very
much fulfill the requirements. A similar browser (fig. 2) for the abstract
syntax of the grammars was developed for GF. In the case of SUMO-GF,
this corresponds exactly to the taxonomy plus the signatures of all functions
and predicates. The user sees the class hierarchy on the left-hand side and
can start with the exploration of any class, or could use to search box in
the upper-left corner to find a class or function by name. The other, more
factual, axioms are not part of the SUMO-GF grammar and currently cannot
be explored with the browser. It is possible, however, to do this as a future
extension of the interface.

8. Related Work

At the moment there exists a large number of applications dealing with
ontologies and building various applications on top of them. Regarding the
languages that are used to encode ontologies, as mentioned before, the most
popular ones do not have a type system.

Typeful Ontologies with Direct Multilingual Verbalization 21

Figure 1. Text editor for authoring SUMO axioms using controlled natural language
Translate Cuery Browse Grarmmar: | SUMO.pgf hd From: | SUMOEng To: | All languages v

& Class

for every unique list LIST , every NUMBER1 and every positive
integer NUMBERZ2 we have that if the element with number NUI

Figure 2. Browser for combined ontology and syntax exploration
Translate Query Browse Grammar: | SUMO. pgf hd Fram: | SUMOEng hd Ta: | All languages %

Search
fun ContentBearingPhysical @ Class
= Entity
Abstract Syntax
= Physical
® ContentBearingPhysical SUMO ContentBearingPhysical
Object SUMOEng | content-bearing physical entity
PhysicalSystem SUMOFre | physique avec du sens
Process

SUMORon | concret cu continut

Producers

ContentBearingObject_Class ContentBearingPhysical_Class
CaontentBearingProcess_Class lcon_Class LinguisticExpression_Class

Consumers

22 K. Angelov, R. Enache

An exception is the programming language prototype Zhi#**, which is
a novel language for encoding ontologies. It has a static type-system and it
is compiled to C#. The type system is inspired from the Java and C# type
systems, and it benefits from using the C# built-in types and functions.
However, the syntax looks very much like the normal C# one, and it is not
very intuitive for users that do not have a reasonable background in object
oriented programming .

Another notable example of a strongly typed language for representing
ontologies is CASL (Common Algebraic Specification Language)[14]. It pro-
vides a strong formal structure, but it lacks the natural language generation
component.

Compared to these languages, GF is the only system which combines a
strongly typed framework for ontology description with a direct multilingual
verbalization. To our knowledge, the current work is the first representa-
tion of an ontology in type theory with dependent types. The benefits of
dependent types are visible when expressing the concepts and relations from
SUMO in GF, as they provide better control on their semantics. The usage
of dependent types gives elegance and robustness to the representation.

Regarding natural language generation, there are many notable applica-
tions that verbalize ontologies. Most of them however, have only English as
target. A notable exception is the KPML project [4], which provides nat-
ural language generation for 10 languages. Another interesting case is the
Gellish ontology which provides direct verbalization for English, German
and Dutch. However, for languages with a more complicated inflectional
morphology, or languages which feature clitics, such as the members of the
Slavic or Romance families, the applications that generate natural language,
do not usually render correct constructions for these problematic situations.
The GF approach has built-in mechanisms for verbalization via the resource
grammars, and the translations it provides are syntactically correct. More-
over, GF also has support for multilingual translation.

Regarding automatic reasoning, there has been work for checking the
consistency of all the well-known ontologies. A notable example is the use of
the E theorem prover for the ResearchCyC ontology[20]. However, SUMO
is the most well-known case of an ontology which is checked for consistency
every year, as part of a CADE competition. Compared to the official SUMO
translation to TPTP, our approach has a comparable expressivity, rejecting
the ill-typed axioms at an earlier stage.

The project OntoNat[5] provides automated reasoning for the SUMO

**http://www.alexpaar.de/zhimantic/ZhiSharp.pdf

Typeful Ontologies with Direct Multilingual Verbalization 23

ontology with KRHyper[29], which is a theorem prover for first-order logic
that implements hyper tableaux. It provides a better behaviour for non-
provable tasks than an ordinary theorem prover for first-order logic. It also
features a special treatment of equality from SUMO, which is weaker than
the built-in equality from TPTP. Moreover, the project provides a more
elaborated treatment of class-forming operators from SUMO and of first-
order quantifiers. The project can answer to a question posed in normal
English, by using the WordNet mappings and a simple parser, in order to
infer the SUMO expression that should be checked.

9. Future Work

The current work explores aspects of data modeling, compiling from an
untyped system to a typed one and from a typed system to first-order logic,
type inference, natural language generation, and automated reasoning. Each
of these directions can be extended in a more comprehensive manner and
lead to stand-alone projects.

One interesting possibility would be to generate higher-quality natural
language, following the ideal! that would require truncating the hierarchy
even more, separating Attributes and Processes. Instances of Attribute
and its subclasses can be linearized as adjective phrases, while instances and
subclasses of Process are to be linearized as verb phrases. In this way a
predicate like:

(attribute 7X NonFullyFormed)

would not be linearized as non fully formed is an attribute of X but as X is
not fully formed. For a predicate like:

(agent Reasoning ?A)

we would obtain A reasons instead of A is an agent of reasoning.

Another interesting application would be to build a user interface, where
users could ask questions and get answers from the theorem prover via the
GF to TPTP translation. If the proover provides trace of the proof search,
the trace could be converted back to GF tree and used for generation of
proof explanations in natural language.

"Thttp://www.ontologyportal.org/student.html

24

10.

K. Angelov, R. Enache

Conclusion

Using strongly typed language in ontologies is promising from both a knowl-
edge engineering and a linguistic point of view. Unfortunately more manual
work is needed to reach the full coverage of SUMO. The ontologies with
direct verbalization are challenging but rewarding because they give insides
about the interaction between the logical and the linguistic aspects.

References

(1]
2]

(10]
(11]

(12]

(13]

14]

(15]
[16]

‘MOLTO - Multilingual Online Translation. European Project’, ; 2010-2012.
AHRENDT, WOLFGANG, THOMAS BAAR, BERNHARD BECKERT, RICHARD BUBEL,
MARTIN GIESE, REINER HAHNLE, WOLFRAM MENZEL, WOJCIECH MOSTOWSKI, AN-
DREAS ROTH, STEFFEN SCHLAGER, and PETER H. SCHMITT, ‘The key tool’, Technical
report in computing science no. 2003-5, Department of Computing Science, Chalmers
University and Goteborg University, Goteborg, Sweden, 2003.

ANGELOV, K., B. BRINGERT, and A. RANTA, ‘PGF: A Portable Run-Time Format for
Type-Theoretical Grammars’, Journal of Logic, Language and Information, (2009).
BATEMAN, JOHN A., ‘Enabling technology for multilingual natural language genera-
tion: the kpml development environment’, Nat. Lang. Eng., 3 (1997), 1, 15-55.
BAUMGARTNER, PETER, and FABIAN M. SUCHANEK, ‘Automated reasoning support
for sumo/kif’, , 2005. Manuscript, Max-Planck Institute for Computer Science.
BECHHOFER, SEAN, FRANK VAN HARMELEN, JiIM HENDLER, IAN HORROCKS, DEB-
ORAH L. MCGUINNESS, PETER F. PATEL-SCHNEIDER, and LYNN ANDREA STEIN,
‘OWL web ontology language reference’, , 2009.

BRINGERT, BJORN, KRASIMIR ANGELOV, and AARNE RANTA, ‘Grammatical frame-
work web service’, in EACL (Demos), 2009, pp. 9-12.

BURKE, DAVID A., and KRISTOFER JOHANNISSON, ‘Translating formal software spec-
ifications to natural language’, in LACL, 2005, pp. 51-66.

CAPROTTI, O., ‘WebALT! Deliver Mathematics Everywhere’, in Proceedings of SITE
2006. Orlando March 20-24, 2006.

CYCORP, ‘The syntax of CycL’, , 2002.

GANESERETH, MICHAEL R., and RICHARD E. FIKES, ‘Knowledge interchange format’,
Tech. Rep. Logic-92-1, Stanford University, 1992.

GIRARD, JEAN-YVES, ‘Interpretation fonctionnelle et elimination des coupures de
I’arithmetique d’ordre superieur’, Paris, 1972.

LJUNGLOF, P., G. AMORES, R. CoOPER, D. HJELM, O. LEMON, P. MANCHON,
G. PEREZ, and A. RANTA, ‘Multimodal Grammar Library’, , 2006. TALK. Talk and
Look: Tools for Ambient Linguistic Knowledge. IST-507802. Deliverable 1.2b.
LrTicH, KLAUS, Development of Structured Ontologies in CASL, Ph.D. thesis, Uni-
versity of Bremen, 2007. PhD thesis.

MARTIN-LOF, PER, ‘A theory of types’, , 1971. Unpublished.

MARTIN-LOF, PER, ‘Constructive mathematics and computer programming’, in Co-
hen, Los, Pfeiffer, and Podewski, (eds.), Logic, Methodology and Philosophy of Science
VI, North-Holland, Amsterdam, 1982, pp. 153-175.

Typeful Ontologies with Direct Multilingual Verbalization 25

(17]

18]

(19]

(20]

(21]

(22]
23]

24]
[25]

[26]

27]

28]
29]

NiLES, IAN, and ADAM PEASE, ‘Towards a standard upper ontology’, in FOIS ’01:
Proceedings of the international conference on Formal Ontology in Information Sys-
tems, ACM, New York, NY, USA, 2001, pp. 2-9.

PEASE, ADAM, ‘The sigma ontology development environment’, Working Notes of
the IJCAI-2008 Workshop on Ontology and Distributed Systems, 71 (2003).

PEASE, ADAM, and GEOFF SUTCLIFFE, ‘First order reasoning on a large ontology’,
Proceedings of the CADE-21 workshop on Empirically Successful Automated Reason-
ing on Large Theories (ESARLT), (2007).

RAMACHANDRAN, DEEPAK, PACE REAGAN, and KEITH GOOLSBEY, ‘First-orderized
researchcyc: Expressivity and efficiency in a common-sense ontology’, in In Papers
from the AAAI Workshop on Contexts and Ontologies: Theory, Practice and Appli-
cations, 2005.

RANTA, A., ‘Structures grammaticales dans le frangais mathématique’,
Mathématiques, informatique et Sciences Humaines, (1997), 138, 139, 5-56,
5-36.

RANTA, A., ‘Grammatical Framework: A Type-Theoretical Grammar Formalism’,
The Journal of Functional Programming, 14(2) (2004), 145-189.

RANTA, AARNE, ‘The GF resource grammar library’, Linguistic Issues in Language
Technology, 2 (2009), 2.

SCHULZ, STEPHAN, ‘E - a brainiac theorem prover’, , 2002.

SUTCLIFFE, GEOFF, ‘The TPTP problem library and associated infrastructure’, Jour-
nal of Automated Reasoning, 43 (2009), 337-362. 10.1007/s10817-009-9143-8.

TRAC, STEVEN, GEOFF SUTCLIFFE, and ADAM PEASE, ‘Integration of the tptpworld
into sigmakee’, Proceedings of IJCAR ’08 Workshop on Practical Aspects of Auto-
mated Reasoning (PAAR-2008), 373 (2009).

VAN RENSSEN, ANDRIES, Gellish: A Generic Extensible Ontological Language, Ph.D.
thesis, Delft University, 2005. PhD thesis.

W3C, ‘Named graphs’, , 2004.

WERNHARD, CHRISTOPH, ‘System Description: KRHyper’, Fachberichte Informatik
14-2003, Universitt Koblenz-Landau, Universitt Koblenz-Landau, Institut fr Infor-
matik, Universittsstr. 1, D-56070 Koblenz, 2003.

KRASIMIR ANGELOV

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden

krasimir@chalmers.se

RamoNA ENACHE

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden

ramona.enache@chalmers.se

